On the Bishop-Phelps-Bollobás Property for Numerical Radius
We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensiona...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/479208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu) and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show that L1μ-spaces have this property for every measure μ. On the other hand, we show that every infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this shows that the Radon-Nikodým property (even reflexivity) is not enough to get BPBp-nu. |
---|---|
ISSN: | 1085-3375 1687-0409 |