Hybrid CNN-GCN Network for Hyperspectral Image Classification
In recent years, convolutional neural networks (CNNs) have been impressive due to their excellent feature representation abilities, but it is difficult to learn long-distance spatial structures information. Unlike CNN, graph convolutional networks (GCNs) can well handle the intrinsic manifold struct...
Saved in:
| Main Authors: | Cuiping Shi, Diling Liao, Liguo Wang |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10915579/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Spatial Multifeature and Dual-Layer Multihop Graph Convolution Networks for Hyperspectral Image Classification
by: Xiangyue Yu, et al.
Published: (2025-01-01) -
Multiscale Wavelet and Graph Network With Spectral Self-Attention for Hyperspectral Image Classification
by: Anyembe C. Shibwabo, et al.
Published: (2025-01-01) -
Hyperspectral Band Selection via Heterogeneous Graph Convolutional Self-Representation Network
by: Junde Chen, et al.
Published: (2025-01-01) -
Spatial-Spectral Adaptive Graph Convolutional Subspace Clustering for Hyperspectral Image
by: Yuqi Liu, et al.
Published: (2025-01-01) -
Self- and Cross-Attention Enhanced Transformer for Visible and Thermal Infrared Hyperspectral Image Classification
by: Enyu Zhao, et al.
Published: (2025-01-01)