Dysregulated Intestinal Host–Microbe Interactions in Systemic Lupus Erythematosus: Insights from Patients and Mouse Models

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by chronic inflammation that affects multiple organs, with its prevalence varying by ethnicity. Intestinal dysbiosis has been observed in both SLE patients and murine models. Additionally, intestinal barrier impairment is thou...

Full description

Saved in:
Bibliographic Details
Main Authors: Miki Kume, Jin Din, Daniel F. Zegarra-Ruiz
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/13/3/556
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by chronic inflammation that affects multiple organs, with its prevalence varying by ethnicity. Intestinal dysbiosis has been observed in both SLE patients and murine models. Additionally, intestinal barrier impairment is thought to contribute to the ability of pathobionts to evade and breach immune defenses, resulting in antigen cross-reactivity, microbial translocation, subsequent immune activation, and, ultimately, multiple organ failure. Since the detailed mechanisms underlying these processes are difficult to examine using human samples, murine models are crucial. Various SLE murine models, including genetically modified spontaneous and inducible murine models, offer insights into pathobionts and how they dysregulate systemic immune systems. Furthermore, since microbial metabolites modulate systemic immune responses, bacteria and their metabolites can be targeted for treatment. Based on human and mouse research insights, this review examines how lupus pathobionts trigger intestinal and systemic immune dysregulation. Therapeutic approaches, such as fecal microbiota transplantation and dietary adjustments, show potential as cost-effective and safe methods for preventing and treating SLE. Understanding the complex interactions between the microbiota, host factors, and immune dysregulation is essential for developing novel, personalized therapies to tackle this multifaceted disease.
ISSN:2076-2607