Immobilized Native Bacteria as a Tool for Bioremediation of Soils and Waters: Implementation and Modeling
Based on 3,4-dihydroxyphenylacetate (3,4-DHPA) dioxygenase amino acid sequence and DNA sequence data for homologous genes, two different oligonucleotides were designed. These were assayed to detect 3,4-DHPA related aromatic compound—degrading bacteria in soil samples by using the FISH method. Also,...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2002-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1100/tsw.2002.211 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on 3,4-dihydroxyphenylacetate (3,4-DHPA) dioxygenase amino acid sequence and DNA sequence data for homologous genes, two different oligonucleotides were designed. These were assayed to detect 3,4-DHPA related aromatic compound—degrading bacteria in soil samples by using the FISH method. Also, amplification by PCR using a set of ERIC primers was assayed for the detection of Pseudomonas GCH1 strain, which used in the soil bioremediation process. A model was developed to understand and predict the behavior of bacteria and pollutants in a bioremediation system, taking into account fluid dynamics, molecular/cellular scale processes, and biofilm formation. |
---|---|
ISSN: | 1537-744X |