Liquid crystal torons in Poiseuille-like flows

Abstract Three-dimensional (3D) simulations of the structure of liquid crystal (LC) torons, topologically protected distortions of the LC director field, under material flows are rare but essential in microfluidic applications. Here, we show that torons adopt a steady-state configuration at low flow...

Full description

Saved in:
Bibliographic Details
Main Authors: Guilherme N. C. Amaral, Hanqing Zhao, Mahmoud Sedahmed, Tomás Campante, Ivan I. Smalyukh, Mykola Tasinkevych, Margarida M. Telo da Gama, Rodrigo C. V. Coelho
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-83294-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585841292083200
author Guilherme N. C. Amaral
Hanqing Zhao
Mahmoud Sedahmed
Tomás Campante
Ivan I. Smalyukh
Mykola Tasinkevych
Margarida M. Telo da Gama
Rodrigo C. V. Coelho
author_facet Guilherme N. C. Amaral
Hanqing Zhao
Mahmoud Sedahmed
Tomás Campante
Ivan I. Smalyukh
Mykola Tasinkevych
Margarida M. Telo da Gama
Rodrigo C. V. Coelho
author_sort Guilherme N. C. Amaral
collection DOAJ
description Abstract Three-dimensional (3D) simulations of the structure of liquid crystal (LC) torons, topologically protected distortions of the LC director field, under material flows are rare but essential in microfluidic applications. Here, we show that torons adopt a steady-state configuration at low flow velocity before disintegrating at higher velocities, in line with experimental results. Furthermore, we show that under partial slip conditions at the boundaries, the flow induces a reversible elongation of the torons, also consistent with the experimental observations. These results are in contrast with previous simulation results for 2D skyrmions under similar flow conditions, highlighting the need for a 3D description of this LC soliton in relation to its coupling to the material flow. These findings pave the way for future studies of other topological solitons, like hopfions and heliknotons, in flowing soft matter systems.
format Article
id doaj-art-491cd75a7070441993791bd2084f9a3b
institution Kabale University
issn 2045-2322
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-491cd75a7070441993791bd2084f9a3b2025-01-26T12:26:55ZengNature PortfolioScientific Reports2045-23222025-01-0115111010.1038/s41598-024-83294-7Liquid crystal torons in Poiseuille-like flowsGuilherme N. C. Amaral0Hanqing Zhao1Mahmoud Sedahmed2Tomás Campante3Ivan I. Smalyukh4Mykola Tasinkevych5Margarida M. Telo da Gama6Rodrigo C. V. Coelho7Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de LisboaDepartment of Physics and Soft Materials Research Center, University of Colorado BoulderIndependent researcherCentro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de LisboaDepartment of Physics and Soft Materials Research Center, University of Colorado BoulderCentro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de LisboaCentro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de LisboaCentro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de LisboaAbstract Three-dimensional (3D) simulations of the structure of liquid crystal (LC) torons, topologically protected distortions of the LC director field, under material flows are rare but essential in microfluidic applications. Here, we show that torons adopt a steady-state configuration at low flow velocity before disintegrating at higher velocities, in line with experimental results. Furthermore, we show that under partial slip conditions at the boundaries, the flow induces a reversible elongation of the torons, also consistent with the experimental observations. These results are in contrast with previous simulation results for 2D skyrmions under similar flow conditions, highlighting the need for a 3D description of this LC soliton in relation to its coupling to the material flow. These findings pave the way for future studies of other topological solitons, like hopfions and heliknotons, in flowing soft matter systems.https://doi.org/10.1038/s41598-024-83294-7
spellingShingle Guilherme N. C. Amaral
Hanqing Zhao
Mahmoud Sedahmed
Tomás Campante
Ivan I. Smalyukh
Mykola Tasinkevych
Margarida M. Telo da Gama
Rodrigo C. V. Coelho
Liquid crystal torons in Poiseuille-like flows
Scientific Reports
title Liquid crystal torons in Poiseuille-like flows
title_full Liquid crystal torons in Poiseuille-like flows
title_fullStr Liquid crystal torons in Poiseuille-like flows
title_full_unstemmed Liquid crystal torons in Poiseuille-like flows
title_short Liquid crystal torons in Poiseuille-like flows
title_sort liquid crystal torons in poiseuille like flows
url https://doi.org/10.1038/s41598-024-83294-7
work_keys_str_mv AT guilhermencamaral liquidcrystaltoronsinpoiseuillelikeflows
AT hanqingzhao liquidcrystaltoronsinpoiseuillelikeflows
AT mahmoudsedahmed liquidcrystaltoronsinpoiseuillelikeflows
AT tomascampante liquidcrystaltoronsinpoiseuillelikeflows
AT ivanismalyukh liquidcrystaltoronsinpoiseuillelikeflows
AT mykolatasinkevych liquidcrystaltoronsinpoiseuillelikeflows
AT margaridamtelodagama liquidcrystaltoronsinpoiseuillelikeflows
AT rodrigocvcoelho liquidcrystaltoronsinpoiseuillelikeflows