Wafer-scale integration of freestanding photonic devices with color centers in silicon carbide

Abstract Color center platforms have been at the forefront of quantum nanophotonics for applications in quantum networking, computing, and sensing. However, large-scale deployment of this technology has been stifled by a lack of ability to integrate photonic devices at scale while maintaining the pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Sridhar Majety, Victoria A. Norman, Pranta Saha, Alex H. Rubin, Scott Dhuey, Marina Radulaski
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Nanophotonics
Online Access:https://doi.org/10.1038/s44310-024-00049-y
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Color center platforms have been at the forefront of quantum nanophotonics for applications in quantum networking, computing, and sensing. However, large-scale deployment of this technology has been stifled by a lack of ability to integrate photonic devices at scale while maintaining the properties of quantum emitters. We address this challenge in silicon carbide, which has both commercially available wafer-scale substrates and is a host to color centers with desirable optical and spin properties. Using ion beam etching at an angle, we develop a 5-inch wafer process for the fabrication of triangular cross-section photonic devices in bulk 4H-SiC. The developed process has a variability in etch rate and etch angle of 5.4% and 2.9%, respectively. Furthermore, the integrated color centers maintain their optical properties after the etch, thus achieving the nanofabrication goal of wafer-scale nanofabrication in quantum-grade silicon carbide.
ISSN:2948-216X