Unlocking the potential of sugarcane bagasse: a comprehensive analysis for advanced energy conversion

Abstract The sugarcane bagasse was analyzed for Particle Size Distribution (PSD) with a mean geometric diameter of 0.722 mm. Various standard techniques assessed its physical and chemical properties, including density measurements, higher heating value (HHV), thermogravimetric analysis (TGA/DTA), an...

Full description

Saved in:
Bibliographic Details
Main Authors: Nestor Proenza Pérez, Javier Alejandro Rodríguez Travieso, Elbis D´Espaux Shelton, Daniel Travieso Pedroso, Einara Blanco Machin, Celso Eduardo Tuna, José Luz Silveira
Format: Article
Language:English
Published: SpringerOpen 2025-06-01
Series:Bioresources and Bioprocessing
Subjects:
Online Access:https://doi.org/10.1186/s40643-025-00878-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The sugarcane bagasse was analyzed for Particle Size Distribution (PSD) with a mean geometric diameter of 0.722 mm. Various standard techniques assessed its physical and chemical properties, including density measurements, higher heating value (HHV), thermogravimetric analysis (TGA/DTA), and compositional, proximate, ultimate, and CHNS/O analysis. The raw bagasse showed higher volatile matter, fixed carbon, ash content, and HHV of 16 MJ/kg, with lower moisture content (8.71%). Thermal analysis indicated a peak degradation temperature for organic matter at 310–330 °C, and bagasse exhibited a higher combustion index than fossil fuels and other biomasses. Logarithmic models were obtained to determine the real, particle, and apparent densities of bagasse with the mean particle size within the 0.075–9.5 mm range, showing adequate results for particles with a mean diameter greater than 0.15 mm. For smaller particles, the reported errors were 12.6%, 8.23%, and 28%, respectively. These findings highlight sugarcane bagasse's significant potential for thermochemical conversion systems and its importance in selecting and designing fluidized bed technologies like pneumatic conveying, drying, combustion, and gasification equipment. Graphical Abstract
ISSN:2197-4365