Orbital-level band gap engineering of RuO2 for enhanced acidic water oxidation
Abstract Developing efficient and stable oxygen evolution reaction electrocatalysts under acidic conditions is crucial for advancing proton-exchange membrane water electrolysers commercialization. Here, we develop a representative strategy through p-orbital atoms (N, P, S, Se) doping in RuO2 to prec...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60083-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Developing efficient and stable oxygen evolution reaction electrocatalysts under acidic conditions is crucial for advancing proton-exchange membrane water electrolysers commercialization. Here, we develop a representative strategy through p-orbital atoms (N, P, S, Se) doping in RuO2 to precisely regulate the lattice oxygen-mediated mechanism-oxygen vacancy site mechanism pathway. In situ and ex situ measurements along with theoretical calculations demonstrate that Se doping dynamically adjusts the band gap between the Ru-e g and O-p orbitals during the oxygen evolution reaction process. This modulation accelerates electron diffusion to the external circuit, promotes the lattice oxygen-mediated process, and enhances catalytic activity. Additionally, it facilitates electron feedback and stabilizes oxygen vacancies, thereby promoting the oxygen vacancy site mechanism process and enhancing catalytic stability. The resulting Se-RuOx catalyst achieves efficient proton-exchange membrane water electrolysers performance under industrial conditions with a minimal charge overpotential of 1.67 V to achieve a current density of 1 A cm−2 and maintain long-term cyclability for over 1000 h. This work presents a unique method for guiding the future development of high-performance metal oxide catalysts. |
|---|---|
| ISSN: | 2041-1723 |