A New Legendre Spectral Galerkin and Pseudo-Spectral Approximations for Fractional Initial Value Problems
We extend the application of the Galerkin method for treating the multiterm fractional differential equations (FDEs) subject to initial conditions. A new shifted Legendre-Galerkin basis is constructed which satisfies exactly the homogeneous initial conditions by expanding the unknown variable using...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/306746 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We extend the application of the Galerkin method for treating the multiterm fractional differential equations (FDEs) subject to initial conditions. A new shifted Legendre-Galerkin basis is constructed which satisfies exactly the homogeneous initial conditions by expanding the unknown variable using a new polynomial basis of functions which is built upon the shifted Legendre polynomials. A new spectral collocation approximation based on the Gauss-Lobatto quadrature nodes of shifted Legendre polynomials is investigated for solving the nonlinear multiterm FDEs. The main advantage of this approximation is that the solution is expanding by a truncated series of Legendre-Galerkin basis functions. Illustrative examples are presented to ensure the high accuracy and effectiveness of the proposed algorithms are discussed. |
---|---|
ISSN: | 1085-3375 1687-0409 |