Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems

In this paper, we consider a four-point coupled boundary value problem for system of the nonlinear semipositone fractional differential equation D0+αu(t)+λf(t,u(t),v(t))=0,  0<t<1, D0+αv(t)+μg(t,u(t),v(t))=0,  0<t<1, u(0)=v(0)=0,  a1D0+βu(1)=b1D0+βv(ξ), a2D0+βv(1)=b2D0+βu(η),  η,ξ∈(0,1),...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Nageswara Rao, M. Zico Meetei
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2019/2893857
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561907796541440
author S. Nageswara Rao
M. Zico Meetei
author_facet S. Nageswara Rao
M. Zico Meetei
author_sort S. Nageswara Rao
collection DOAJ
description In this paper, we consider a four-point coupled boundary value problem for system of the nonlinear semipositone fractional differential equation D0+αu(t)+λf(t,u(t),v(t))=0,  0<t<1, D0+αv(t)+μg(t,u(t),v(t))=0,  0<t<1, u(0)=v(0)=0,  a1D0+βu(1)=b1D0+βv(ξ), a2D0+βv(1)=b2D0+βu(η),  η,ξ∈(0,1), where the coefficients ai,bi,i=1,2 are real positive constants, α∈(1,2],β∈(0,1],D0+α, D0+β are the standard Riemann-Liouville derivatives. Values of the parameters λ and μ are determined for which boundary value problem has positive solution by utilizing a fixed point theorem on cone.
format Article
id doaj-art-47c74a582edf4372ac622a82a74d3a03
institution Kabale University
issn 1687-9643
1687-9651
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series International Journal of Differential Equations
spelling doaj-art-47c74a582edf4372ac622a82a74d3a032025-02-03T01:23:53ZengWileyInternational Journal of Differential Equations1687-96431687-96512019-01-01201910.1155/2019/28938572893857Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value ProblemsS. Nageswara Rao0M. Zico Meetei1Department of Mathematics, Jazan University, Jazan, Saudi ArabiaDepartment of Mathematics, Jazan University, Jazan, Saudi ArabiaIn this paper, we consider a four-point coupled boundary value problem for system of the nonlinear semipositone fractional differential equation D0+αu(t)+λf(t,u(t),v(t))=0,  0<t<1, D0+αv(t)+μg(t,u(t),v(t))=0,  0<t<1, u(0)=v(0)=0,  a1D0+βu(1)=b1D0+βv(ξ), a2D0+βv(1)=b2D0+βu(η),  η,ξ∈(0,1), where the coefficients ai,bi,i=1,2 are real positive constants, α∈(1,2],β∈(0,1],D0+α, D0+β are the standard Riemann-Liouville derivatives. Values of the parameters λ and μ are determined for which boundary value problem has positive solution by utilizing a fixed point theorem on cone.http://dx.doi.org/10.1155/2019/2893857
spellingShingle S. Nageswara Rao
M. Zico Meetei
Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems
International Journal of Differential Equations
title Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems
title_full Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems
title_fullStr Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems
title_full_unstemmed Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems
title_short Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems
title_sort positive solutions for a coupled system of nonlinear semipositone fractional boundary value problems
url http://dx.doi.org/10.1155/2019/2893857
work_keys_str_mv AT snageswararao positivesolutionsforacoupledsystemofnonlinearsemipositonefractionalboundaryvalueproblems
AT mzicomeetei positivesolutionsforacoupledsystemofnonlinearsemipositonefractionalboundaryvalueproblems