A Strong Convergence Algorithm for the Two-Operator Split Common Fixed Point Problem in Hilbert Spaces

The two-operator split common fixed point problem (two-operator SCFP) with firmly nonexpansive mappings is investigated in this paper. This problem covers the problems of split feasibility, convex feasibility, and equilibrium and can especially be used to model significant image recovery problems su...

Full description

Saved in:
Bibliographic Details
Main Authors: Chung-Chien Hong, Young-Ye Huang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/350479
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The two-operator split common fixed point problem (two-operator SCFP) with firmly nonexpansive mappings is investigated in this paper. This problem covers the problems of split feasibility, convex feasibility, and equilibrium and can especially be used to model significant image recovery problems such as the intensity-modulated radiation therapy, computed tomography, and the sensor network. An iterative scheme is presented to approximate the minimum norm solution of the two-operator SCFP problem. The performance of the presented algorithm is compared with that of the last algorithm for the two-operator SCFP and the advantage of the presented algorithm is shown through the numerical result.
ISSN:1085-3375
1687-0409