A Variational Method for Multivalued Boundary Value Problems
In this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the exis...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2020/8463263 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832553740811370496 |
---|---|
author | Droh Arsène Béhi Assohoun Adjé |
author_facet | Droh Arsène Béhi Assohoun Adjé |
author_sort | Droh Arsène Béhi |
collection | DOAJ |
description | In this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the existence of solution when the corresponding Euler–Lagrange functional is coercive. |
format | Article |
id | doaj-art-47a392ab7e1547e6a4d350c15f6081ac |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-47a392ab7e1547e6a4d350c15f6081ac2025-02-03T05:53:14ZengWileyAbstract and Applied Analysis1085-33751687-04092020-01-01202010.1155/2020/84632638463263A Variational Method for Multivalued Boundary Value ProblemsDroh Arsène Béhi0Assohoun Adjé1UFR Mathématiques et Informatique, Université Félix Houphouet Boigny, Cocody, Abidjan 22 BP 582, Côte d’IvoireUFR Mathématiques et Informatique, Université Félix Houphouet Boigny, Cocody, Abidjan 22 BP 582, Côte d’IvoireIn this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the existence of solution when the corresponding Euler–Lagrange functional is coercive.http://dx.doi.org/10.1155/2020/8463263 |
spellingShingle | Droh Arsène Béhi Assohoun Adjé A Variational Method for Multivalued Boundary Value Problems Abstract and Applied Analysis |
title | A Variational Method for Multivalued Boundary Value Problems |
title_full | A Variational Method for Multivalued Boundary Value Problems |
title_fullStr | A Variational Method for Multivalued Boundary Value Problems |
title_full_unstemmed | A Variational Method for Multivalued Boundary Value Problems |
title_short | A Variational Method for Multivalued Boundary Value Problems |
title_sort | variational method for multivalued boundary value problems |
url | http://dx.doi.org/10.1155/2020/8463263 |
work_keys_str_mv | AT droharsenebehi avariationalmethodformultivaluedboundaryvalueproblems AT assohounadje avariationalmethodformultivaluedboundaryvalueproblems AT droharsenebehi variationalmethodformultivaluedboundaryvalueproblems AT assohounadje variationalmethodformultivaluedboundaryvalueproblems |