A Variational Method for Multivalued Boundary Value Problems

In this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the exis...

Full description

Saved in:
Bibliographic Details
Main Authors: Droh Arsène Béhi, Assohoun Adjé
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2020/8463263
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553740811370496
author Droh Arsène Béhi
Assohoun Adjé
author_facet Droh Arsène Béhi
Assohoun Adjé
author_sort Droh Arsène Béhi
collection DOAJ
description In this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the existence of solution when the corresponding Euler–Lagrange functional is coercive.
format Article
id doaj-art-47a392ab7e1547e6a4d350c15f6081ac
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2020-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-47a392ab7e1547e6a4d350c15f6081ac2025-02-03T05:53:14ZengWileyAbstract and Applied Analysis1085-33751687-04092020-01-01202010.1155/2020/84632638463263A Variational Method for Multivalued Boundary Value ProblemsDroh Arsène Béhi0Assohoun Adjé1UFR Mathématiques et Informatique, Université Félix Houphouet Boigny, Cocody, Abidjan 22 BP 582, Côte d’IvoireUFR Mathématiques et Informatique, Université Félix Houphouet Boigny, Cocody, Abidjan 22 BP 582, Côte d’IvoireIn this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the existence of solution when the corresponding Euler–Lagrange functional is coercive.http://dx.doi.org/10.1155/2020/8463263
spellingShingle Droh Arsène Béhi
Assohoun Adjé
A Variational Method for Multivalued Boundary Value Problems
Abstract and Applied Analysis
title A Variational Method for Multivalued Boundary Value Problems
title_full A Variational Method for Multivalued Boundary Value Problems
title_fullStr A Variational Method for Multivalued Boundary Value Problems
title_full_unstemmed A Variational Method for Multivalued Boundary Value Problems
title_short A Variational Method for Multivalued Boundary Value Problems
title_sort variational method for multivalued boundary value problems
url http://dx.doi.org/10.1155/2020/8463263
work_keys_str_mv AT droharsenebehi avariationalmethodformultivaluedboundaryvalueproblems
AT assohounadje avariationalmethodformultivaluedboundaryvalueproblems
AT droharsenebehi variationalmethodformultivaluedboundaryvalueproblems
AT assohounadje variationalmethodformultivaluedboundaryvalueproblems