Prime valued polynomials and class numbers of quadratic fields
It is the purpose of this paper to give a survey of the relationship between the class number one problem for real quadratic fields and prime-producing quadratic polynomials; culminating in an overview of the recent solution to the class number one problem for real quadratic fields of Richaud-Degert...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1990-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171290000011 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832558719663079424 |
---|---|
author | Richard A. Mollin |
author_facet | Richard A. Mollin |
author_sort | Richard A. Mollin |
collection | DOAJ |
description | It is the purpose of this paper to give a survey of the relationship between the class number one problem for real quadratic fields and prime-producing quadratic polynomials; culminating in an overview of the recent solution to the class number one problem for real quadratic fields of Richaud-Degert type. We conclude with new conjectures, questions and directions. |
format | Article |
id | doaj-art-47959145e5f7484c9160c0afed0ff1a2 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1990-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-47959145e5f7484c9160c0afed0ff1a22025-02-03T01:31:43ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113111110.1155/S0161171290000011Prime valued polynomials and class numbers of quadratic fieldsRichard A. Mollin0Department of Mathematics and Statistics, The University of Calgary, Calgary T2N 1N4, Alberta, CanadaIt is the purpose of this paper to give a survey of the relationship between the class number one problem for real quadratic fields and prime-producing quadratic polynomials; culminating in an overview of the recent solution to the class number one problem for real quadratic fields of Richaud-Degert type. We conclude with new conjectures, questions and directions.http://dx.doi.org/10.1155/S0161171290000011class number onereal quadratic fieldsRichaud-Degert typesprime-valued quadratic polynomialsGauss' conjecture. |
spellingShingle | Richard A. Mollin Prime valued polynomials and class numbers of quadratic fields International Journal of Mathematics and Mathematical Sciences class number one real quadratic fields Richaud-Degert types prime-valued quadratic polynomials Gauss' conjecture. |
title | Prime valued polynomials and class numbers of quadratic fields |
title_full | Prime valued polynomials and class numbers of quadratic fields |
title_fullStr | Prime valued polynomials and class numbers of quadratic fields |
title_full_unstemmed | Prime valued polynomials and class numbers of quadratic fields |
title_short | Prime valued polynomials and class numbers of quadratic fields |
title_sort | prime valued polynomials and class numbers of quadratic fields |
topic | class number one real quadratic fields Richaud-Degert types prime-valued quadratic polynomials Gauss' conjecture. |
url | http://dx.doi.org/10.1155/S0161171290000011 |
work_keys_str_mv | AT richardamollin primevaluedpolynomialsandclassnumbersofquadraticfields |