Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP

This paper addresses a biobjective production-distribution planning problem. The problem is formulated as a mixed integer programming problem with two objectives. The objectives are to minimize the total costs and to balance the total workload of the supply chain, which consist of plants and depots,...

Full description

Saved in:
Bibliographic Details
Main Authors: Martha-Selene Casas-Ramírez, José-Fernando Camacho-Vallejo, Rosa G. González-Ramírez, José-Antonio Marmolejo-Saucedo, José-Manuel Velarde-Cantú
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/3418580
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549646651621376
author Martha-Selene Casas-Ramírez
José-Fernando Camacho-Vallejo
Rosa G. González-Ramírez
José-Antonio Marmolejo-Saucedo
José-Manuel Velarde-Cantú
author_facet Martha-Selene Casas-Ramírez
José-Fernando Camacho-Vallejo
Rosa G. González-Ramírez
José-Antonio Marmolejo-Saucedo
José-Manuel Velarde-Cantú
author_sort Martha-Selene Casas-Ramírez
collection DOAJ
description This paper addresses a biobjective production-distribution planning problem. The problem is formulated as a mixed integer programming problem with two objectives. The objectives are to minimize the total costs and to balance the total workload of the supply chain, which consist of plants and depots, considering that it represents a company vertically integrated. In order to solve the model, we propose an adapted biobjective GRASP to obtain an approximation of the Pareto front. To evaluate the performance of the proposed algorithm, numerical experimentations are conducted over a set of instances used for similar problems. Results indicate that the proposed GRASP obtains a relatively small number of nondominated solutions for each tested instance in very short computational time. The approximated Pareto fronts are discontinuous and nonconvex. Moreover, the solutions clearly show the compromise between both objective functions.
format Article
id doaj-art-476dcd505c394fa19fb1c40bb4c5ee93
institution Kabale University
issn 1076-2787
1099-0526
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Complexity
spelling doaj-art-476dcd505c394fa19fb1c40bb4c5ee932025-02-03T06:10:51ZengWileyComplexity1076-27871099-05262018-01-01201810.1155/2018/34185803418580Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASPMartha-Selene Casas-Ramírez0José-Fernando Camacho-Vallejo1Rosa G. González-Ramírez2José-Antonio Marmolejo-Saucedo3José-Manuel Velarde-Cantú4Departamento de Actuaría, Física y Matemáticas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, 72810 San Andrés Cholula, PUE, MexicoFacultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, 66450 San Nicolás de los Garza, NL, MexicoFaculty of Engineering and Applied Sciences, Universidad de los Andes Chile, Monseñor Álvaro Portillo 12455, Las Condes, Santiago, ChileFacultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, 03920 Ciudad de México, MexicoInstituto Tecnológico de Sonora Unidad Navojoa, Ramón Corona S/N, Esq. con Aguascalientes, Col. ITSON, Navojoa, SON, MexicoThis paper addresses a biobjective production-distribution planning problem. The problem is formulated as a mixed integer programming problem with two objectives. The objectives are to minimize the total costs and to balance the total workload of the supply chain, which consist of plants and depots, considering that it represents a company vertically integrated. In order to solve the model, we propose an adapted biobjective GRASP to obtain an approximation of the Pareto front. To evaluate the performance of the proposed algorithm, numerical experimentations are conducted over a set of instances used for similar problems. Results indicate that the proposed GRASP obtains a relatively small number of nondominated solutions for each tested instance in very short computational time. The approximated Pareto fronts are discontinuous and nonconvex. Moreover, the solutions clearly show the compromise between both objective functions.http://dx.doi.org/10.1155/2018/3418580
spellingShingle Martha-Selene Casas-Ramírez
José-Fernando Camacho-Vallejo
Rosa G. González-Ramírez
José-Antonio Marmolejo-Saucedo
José-Manuel Velarde-Cantú
Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP
Complexity
title Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP
title_full Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP
title_fullStr Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP
title_full_unstemmed Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP
title_short Optimizing a Biobjective Production-Distribution Planning Problem Using a GRASP
title_sort optimizing a biobjective production distribution planning problem using a grasp
url http://dx.doi.org/10.1155/2018/3418580
work_keys_str_mv AT marthaselenecasasramirez optimizingabiobjectiveproductiondistributionplanningproblemusingagrasp
AT josefernandocamachovallejo optimizingabiobjectiveproductiondistributionplanningproblemusingagrasp
AT rosaggonzalezramirez optimizingabiobjectiveproductiondistributionplanningproblemusingagrasp
AT joseantoniomarmolejosaucedo optimizingabiobjectiveproductiondistributionplanningproblemusingagrasp
AT josemanuelvelardecantu optimizingabiobjectiveproductiondistributionplanningproblemusingagrasp