Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions

We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −Δu(x)=λg(x)u(x), x∈D;(∂u/∂n)(x)+αu(x)=0, x∈∂D, where Δ is the standard Laplace operator, D is a bounded domain with smooth boundary, g:D→ℝ is a smooth function which chang...

Full description

Saved in:
Bibliographic Details
Main Author: G. A. Afrouzi
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202007780
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561629440507904
author G. A. Afrouzi
author_facet G. A. Afrouzi
author_sort G. A. Afrouzi
collection DOAJ
description We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −Δu(x)=λg(x)u(x), x∈D;(∂u/∂n)(x)+αu(x)=0, x∈∂D, where Δ is the standard Laplace operator, D is a bounded domain with smooth boundary, g:D→ℝ is a smooth function which changes sign on D and α∈ℝ. We discuss the relation between α and the principal eigenvalues.
format Article
id doaj-art-46e0be58db724344bcf8ddf5a585bcf2
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2002-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-46e0be58db724344bcf8ddf5a585bcf22025-02-03T01:24:34ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252002-01-01301252910.1155/S0161171202007780Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functionsG. A. Afrouzi0Department of Mathematics, Faculty of Basic Sciences, Mazandaran University, Babolsar, IranWe study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −Δu(x)=λg(x)u(x), x∈D;(∂u/∂n)(x)+αu(x)=0, x∈∂D, where Δ is the standard Laplace operator, D is a bounded domain with smooth boundary, g:D→ℝ is a smooth function which changes sign on D and α∈ℝ. We discuss the relation between α and the principal eigenvalues.http://dx.doi.org/10.1155/S0161171202007780
spellingShingle G. A. Afrouzi
Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions
International Journal of Mathematics and Mathematical Sciences
title Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions
title_full Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions
title_fullStr Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions
title_full_unstemmed Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions
title_short Boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions
title_sort boundedness and monotonicity of principal eigenvalues for boundary value problems with indefinite weight functions
url http://dx.doi.org/10.1155/S0161171202007780
work_keys_str_mv AT gaafrouzi boundednessandmonotonicityofprincipaleigenvaluesforboundaryvalueproblemswithindefiniteweightfunctions