Machine learning, clinical-radiomics approach with HIM for hemorrhagic transformation prediction after thrombectomy and treatment
BackgroundThis study aimed to develop a clinical-radiomics model using hyperattenuated imaging markers (HIM), characterized by hyperattenuation on head non-contrast computed tomography immediately after thrombectomy, to predict the risk of hemorrhagic transformation (HT) in patients undergoing endov...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-02-01
|
| Series: | Frontiers in Neurology |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fneur.2025.1471274/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!