SINDy and PD-Based UAV Dynamics Identification for MPC

This study proposes a comprehensive framework for the identification of nonlinear dynamics in Unmanned Aerial Vehicles (UAVs), integrating data-driven methodologies with theoretical modeling approaches. Two principal techniques are employed: Proportional-Derivative (PD)-based control input approxima...

Full description

Saved in:
Bibliographic Details
Main Authors: Bryan S. Guevara, José Varela-Aldás, Daniel C. Gandolfo, Juan M. Toibero
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/1/71
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a comprehensive framework for the identification of nonlinear dynamics in Unmanned Aerial Vehicles (UAVs), integrating data-driven methodologies with theoretical modeling approaches. Two principal techniques are employed: Proportional-Derivative (PD)-based control input approximation and Sparse Identification of Nonlinear Dynamics (SINDy). Addressing the inherent platform constraints—where control inputs are restricted to specific attitude angles and z-axis velocities—thrust and torque are approximated via a PD controller, which serves as a practical intermediary for facilitating nonlinear system identification. Both methodologies leverage data-driven strategies to construct compact and interpretable models from experimental data, capturing significant nonlinearities with high fidelity. The resulting models are rigorously evaluated within a Model Predictive Control (MPC) framework, demonstrating their efficacy in precise trajectory tracking. Furthermore, the integration of data-driven insights enhances the accuracy of the identified models and improves control performance. This framework offers a robust and adaptable solution for analyzing UAV dynamics under realistic operational conditions, emphasizing the comparative strengths and applicability of each modeling approach.
ISSN:2504-446X