A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type Exponents

It is proven that if 1≤p(·)<∞ in a bounded domain Ω⊂Rn and if p(·)∈EXPa(Ω) for some a>0, then given f∈Lp(·)(Ω), the Hardy-Littlewood maximal function of f, Mf, is such that p(·)log(Mf)∈EXPa/(a+1)(Ω). Because a/(a+1)<1, the thesis is slightly weaker than (Mf)λp(·)∈L1(Ω) for some λ>0. The...

Full description

Saved in:
Bibliographic Details
Main Author: Alberto Fiorenza
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2015/581064
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549572538269696
author Alberto Fiorenza
author_facet Alberto Fiorenza
author_sort Alberto Fiorenza
collection DOAJ
description It is proven that if 1≤p(·)<∞ in a bounded domain Ω⊂Rn and if p(·)∈EXPa(Ω) for some a>0, then given f∈Lp(·)(Ω), the Hardy-Littlewood maximal function of f, Mf, is such that p(·)log(Mf)∈EXPa/(a+1)(Ω). Because a/(a+1)<1, the thesis is slightly weaker than (Mf)λp(·)∈L1(Ω) for some λ>0. The assumption that p(·)∈EXPa(Ω) for some a>0 is proven to be optimal in the framework of the Orlicz spaces to obtain p(·)log(Mf) in the same class of spaces.
format Article
id doaj-art-465af6a923a140978969b6a06c57a07b
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-465af6a923a140978969b6a06c57a07b2025-02-03T06:11:00ZengWileyJournal of Function Spaces2314-88962314-88882015-01-01201510.1155/2015/581064581064A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type ExponentsAlberto Fiorenza0Dipartimento di Architettura, Università di Napoli, Via Monteoliveto 3, 80134 Napoli, ItalyIt is proven that if 1≤p(·)<∞ in a bounded domain Ω⊂Rn and if p(·)∈EXPa(Ω) for some a>0, then given f∈Lp(·)(Ω), the Hardy-Littlewood maximal function of f, Mf, is such that p(·)log(Mf)∈EXPa/(a+1)(Ω). Because a/(a+1)<1, the thesis is slightly weaker than (Mf)λp(·)∈L1(Ω) for some λ>0. The assumption that p(·)∈EXPa(Ω) for some a>0 is proven to be optimal in the framework of the Orlicz spaces to obtain p(·)log(Mf) in the same class of spaces.http://dx.doi.org/10.1155/2015/581064
spellingShingle Alberto Fiorenza
A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type Exponents
Journal of Function Spaces
title A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type Exponents
title_full A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type Exponents
title_fullStr A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type Exponents
title_full_unstemmed A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type Exponents
title_short A Local Estimate for the Maximal Function in Lebesgue Spaces with EXP-Type Exponents
title_sort local estimate for the maximal function in lebesgue spaces with exp type exponents
url http://dx.doi.org/10.1155/2015/581064
work_keys_str_mv AT albertofiorenza alocalestimateforthemaximalfunctioninlebesguespaceswithexptypeexponents
AT albertofiorenza localestimateforthemaximalfunctioninlebesguespaceswithexptypeexponents