Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy
<b>Introduction:</b> This study aimed to evaluate whether glycoprotein and lipoprotein lipidomics profiles could enhance a clinical predictive model for carotid subclinical atherosclerosis in patients with type 1 diabetes (T1D). Additionally, we assessed the influence of cardiac autonomi...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Metabolites |
Subjects: | |
Online Access: | https://www.mdpi.com/2218-1989/15/1/55 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832587988593278976 |
---|---|
author | Sara de Lope Quiñones Manuel Luque-Ramírez Antonio Carlos Michael Fernández Alejandra Quintero Tobar Jhonatan Quiñones-Silva María Ángeles Martínez García María Insenser Nieto Beatriz Dorado Avendaño Héctor F. Escobar-Morreale Lía Nattero-Chávez |
author_facet | Sara de Lope Quiñones Manuel Luque-Ramírez Antonio Carlos Michael Fernández Alejandra Quintero Tobar Jhonatan Quiñones-Silva María Ángeles Martínez García María Insenser Nieto Beatriz Dorado Avendaño Héctor F. Escobar-Morreale Lía Nattero-Chávez |
author_sort | Sara de Lope Quiñones |
collection | DOAJ |
description | <b>Introduction:</b> This study aimed to evaluate whether glycoprotein and lipoprotein lipidomics profiles could enhance a clinical predictive model for carotid subclinical atherosclerosis in patients with type 1 diabetes (T1D). Additionally, we assessed the influence of cardiac autonomic neuropathy (CAN) on these predictive models. <b>Methods:</b> We conducted a cross-sectional study including 256 patients with T1D. Serum glycoprotein and lipoprotein lipidomics profiles were determined using <sup>1</sup>H-NMR spectroscopy. Subclinical atherosclerosis was defined as carotid intima-media thickness (cIMT) ≥ 1.5 mm. CAN was identified using the Clarke score. Predictive models were built and their performance evaluated using receiver operating characteristic curves and cross-validation. <b>Results:</b> Subclinical atherosclerosis was detected in 32% of participants. Patients with both CAN and atherosclerosis were older, had a longer duration of diabetes, and were more likely to present with bilateral carotid disease. Clinical predictors such as age, duration of diabetes, and smoking status remained the strongest determinants of subclinical atherosclerosis [AUC = 0.88 (95%CI: 0.84–0.93)]. While glycoprotein and lipoprotein lipidomics profiles were associated with atherosclerosis, their inclusion in the clinical model did not significantly improve its diagnostic performance. Stratification by the presence of CAN revealed no impact on the model’s ability to predict subclinical atherosclerosis, underscoring its robustness across different risk subgroups. <b>Conclusions:</b> In a cohort of patients with T1D, subclinical atherosclerosis was strongly associated with traditional clinical risk factors. Advanced glycoprotein and lipoprotein lipidomics profiling, although associated with atherosclerosis, did not enhance the diagnostic accuracy of predictive models beyond clinical variables. The predictive model remained effective even in the presence of CAN, highlighting its reliability as a screening tool for identifying patients at risk of subclinical atherosclerosis. |
format | Article |
id | doaj-art-464bfd5b362c44a79495097ed419947a |
institution | Kabale University |
issn | 2218-1989 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Metabolites |
spelling | doaj-art-464bfd5b362c44a79495097ed419947a2025-01-24T13:41:18ZengMDPI AGMetabolites2218-19892025-01-011515510.3390/metabo15010055Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic NeuropathySara de Lope Quiñones0Manuel Luque-Ramírez1Antonio Carlos Michael Fernández2Alejandra Quintero Tobar3Jhonatan Quiñones-Silva4María Ángeles Martínez García5María Insenser Nieto6Beatriz Dorado Avendaño7Héctor F. Escobar-Morreale8Lía Nattero-Chávez9Diabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, SpainDiabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, SpainDepartment of Radiology, Hospital Universitario Ramón y Cajal, 28034 Madrid, SpainDiabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, SpainDepartment of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, SpainDiabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, SpainDiabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, SpainDepartment of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, 28034 Madrid, SpainDiabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, SpainDiabetes, Obesity and Human Reproduction Research Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad de Alcalá, 28034 Madrid, Spain<b>Introduction:</b> This study aimed to evaluate whether glycoprotein and lipoprotein lipidomics profiles could enhance a clinical predictive model for carotid subclinical atherosclerosis in patients with type 1 diabetes (T1D). Additionally, we assessed the influence of cardiac autonomic neuropathy (CAN) on these predictive models. <b>Methods:</b> We conducted a cross-sectional study including 256 patients with T1D. Serum glycoprotein and lipoprotein lipidomics profiles were determined using <sup>1</sup>H-NMR spectroscopy. Subclinical atherosclerosis was defined as carotid intima-media thickness (cIMT) ≥ 1.5 mm. CAN was identified using the Clarke score. Predictive models were built and their performance evaluated using receiver operating characteristic curves and cross-validation. <b>Results:</b> Subclinical atherosclerosis was detected in 32% of participants. Patients with both CAN and atherosclerosis were older, had a longer duration of diabetes, and were more likely to present with bilateral carotid disease. Clinical predictors such as age, duration of diabetes, and smoking status remained the strongest determinants of subclinical atherosclerosis [AUC = 0.88 (95%CI: 0.84–0.93)]. While glycoprotein and lipoprotein lipidomics profiles were associated with atherosclerosis, their inclusion in the clinical model did not significantly improve its diagnostic performance. Stratification by the presence of CAN revealed no impact on the model’s ability to predict subclinical atherosclerosis, underscoring its robustness across different risk subgroups. <b>Conclusions:</b> In a cohort of patients with T1D, subclinical atherosclerosis was strongly associated with traditional clinical risk factors. Advanced glycoprotein and lipoprotein lipidomics profiling, although associated with atherosclerosis, did not enhance the diagnostic accuracy of predictive models beyond clinical variables. The predictive model remained effective even in the presence of CAN, highlighting its reliability as a screening tool for identifying patients at risk of subclinical atherosclerosis.https://www.mdpi.com/2218-1989/15/1/55cardioautonomic neuropathycardiac autonomic neuropathycarotid plaquesglycoprotein profilelipid profilelipoproteins |
spellingShingle | Sara de Lope Quiñones Manuel Luque-Ramírez Antonio Carlos Michael Fernández Alejandra Quintero Tobar Jhonatan Quiñones-Silva María Ángeles Martínez García María Insenser Nieto Beatriz Dorado Avendaño Héctor F. Escobar-Morreale Lía Nattero-Chávez Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy Metabolites cardioautonomic neuropathy cardiac autonomic neuropathy carotid plaques glycoprotein profile lipid profile lipoproteins |
title | Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy |
title_full | Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy |
title_fullStr | Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy |
title_full_unstemmed | Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy |
title_short | Unveiling Silent Atherosclerosis in Type 1 Diabetes: The Role of Glycoprotein and Lipoprotein Lipidomics, and Cardiac Autonomic Neuropathy |
title_sort | unveiling silent atherosclerosis in type 1 diabetes the role of glycoprotein and lipoprotein lipidomics and cardiac autonomic neuropathy |
topic | cardioautonomic neuropathy cardiac autonomic neuropathy carotid plaques glycoprotein profile lipid profile lipoproteins |
url | https://www.mdpi.com/2218-1989/15/1/55 |
work_keys_str_mv | AT saradelopequinones unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT manuelluqueramirez unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT antoniocarlosmichaelfernandez unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT alejandraquinterotobar unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT jhonatanquinonessilva unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT mariaangelesmartinezgarcia unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT mariainsensernieto unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT beatrizdoradoavendano unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT hectorfescobarmorreale unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy AT lianatterochavez unveilingsilentatherosclerosisintype1diabetestheroleofglycoproteinandlipoproteinlipidomicsandcardiacautonomicneuropathy |