GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach

Abstract Endoscopy is vital for detecting and diagnosing gastrointestinal diseases. Systematic examination protocols are key to enhancing detection, particularly for the early identification of premalignant conditions. Publicly available endoscopy image databases are crucial for machine learning res...

Full description

Saved in:
Bibliographic Details
Main Authors: Diego Bravo, Juan Frias, Felipe Vera, Juan Trejos, Carlos Martínez, Martín Gómez, Fabio González, Eduardo Romero
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-04401-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594966428254208
author Diego Bravo
Juan Frias
Felipe Vera
Juan Trejos
Carlos Martínez
Martín Gómez
Fabio González
Eduardo Romero
author_facet Diego Bravo
Juan Frias
Felipe Vera
Juan Trejos
Carlos Martínez
Martín Gómez
Fabio González
Eduardo Romero
author_sort Diego Bravo
collection DOAJ
description Abstract Endoscopy is vital for detecting and diagnosing gastrointestinal diseases. Systematic examination protocols are key to enhancing detection, particularly for the early identification of premalignant conditions. Publicly available endoscopy image databases are crucial for machine learning research, yet challenges persist, particularly in identifying upper gastrointestinal anatomical landmarks to ensure effective and precise endoscopic procedures. However, many existing datasets have inconsistent labeling and limited accessibility, leading to biased models and reduced generalizability. This paper introduces GastroHUN, an open dataset documenting stomach screening procedures based on a systematic protocol. GastroHUN includes 8,834 images from 387 patients and 4,729 labeled video sequences, all annotated by four experts. The dataset covers 22 anatomical landmarks in the stomach and includes an additional category for unqualified images, making it a valuable resource for AI model development. By providing a robust public dataset and baseline deep learning models for image and sequence classification, GastroHUN serves as a benchmark for future research and aids in the development of more effective algorithms.
format Article
id doaj-art-46303df4f05a4d908ce9805eadb28425
institution Kabale University
issn 2052-4463
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-46303df4f05a4d908ce9805eadb284252025-01-19T12:09:50ZengNature PortfolioScientific Data2052-44632025-01-0112111410.1038/s41597-025-04401-5GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the StomachDiego Bravo0Juan Frias1Felipe Vera2Juan Trejos3Carlos Martínez4Martín Gómez5Fabio González6Eduardo Romero7Universidad Nacional de ColombiaUniversidad Nacional de Colombia, Medicina InternaUniversidad Nacional de Colombia, Medicina InternaUniversidad Nacional de Colombia, Medicina InternaUniversidad Nacional de Colombia, Medicina InternaUniversidad Nacional de Colombia, Medicina InternaUniversidad Nacional de ColombiaUniversidad Nacional de ColombiaAbstract Endoscopy is vital for detecting and diagnosing gastrointestinal diseases. Systematic examination protocols are key to enhancing detection, particularly for the early identification of premalignant conditions. Publicly available endoscopy image databases are crucial for machine learning research, yet challenges persist, particularly in identifying upper gastrointestinal anatomical landmarks to ensure effective and precise endoscopic procedures. However, many existing datasets have inconsistent labeling and limited accessibility, leading to biased models and reduced generalizability. This paper introduces GastroHUN, an open dataset documenting stomach screening procedures based on a systematic protocol. GastroHUN includes 8,834 images from 387 patients and 4,729 labeled video sequences, all annotated by four experts. The dataset covers 22 anatomical landmarks in the stomach and includes an additional category for unqualified images, making it a valuable resource for AI model development. By providing a robust public dataset and baseline deep learning models for image and sequence classification, GastroHUN serves as a benchmark for future research and aids in the development of more effective algorithms.https://doi.org/10.1038/s41597-025-04401-5
spellingShingle Diego Bravo
Juan Frias
Felipe Vera
Juan Trejos
Carlos Martínez
Martín Gómez
Fabio González
Eduardo Romero
GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach
Scientific Data
title GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach
title_full GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach
title_fullStr GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach
title_full_unstemmed GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach
title_short GastroHUN an Endoscopy Dataset of Complete Systematic Screening Protocol for the Stomach
title_sort gastrohun an endoscopy dataset of complete systematic screening protocol for the stomach
url https://doi.org/10.1038/s41597-025-04401-5
work_keys_str_mv AT diegobravo gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach
AT juanfrias gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach
AT felipevera gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach
AT juantrejos gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach
AT carlosmartinez gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach
AT martingomez gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach
AT fabiogonzalez gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach
AT eduardoromero gastrohunanendoscopydatasetofcompletesystematicscreeningprotocolforthestomach