Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes

Abstract Inorganic fillers play an important role in improving the ionic conductivity of solid composite electrolytes (SCEs) for Li‐ion batteries. Among inorganic fillers, perovskite‐type lithium lanthanum titanate (LLTO) stands out for its high bulk Li+ conductivity on the order of 10−3 S cm−1 at r...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Wang, Jiyoung Ock, X. Chelsea Chen, Fan Wang, Meijia Li, Matthew S. Chambers, Gabriel M. Veith, Lauren B. Shepard, Susan B. Sinnott, Albina Borisevich, Miaofang Chi, Amit Bhattacharya, Raphaële J. Clément, Alexei P Sokolov, Sheng Dai
Format: Article
Language:English
Published: Wiley 2025-01-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202408805
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832593540330291200
author Tao Wang
Jiyoung Ock
X. Chelsea Chen
Fan Wang
Meijia Li
Matthew S. Chambers
Gabriel M. Veith
Lauren B. Shepard
Susan B. Sinnott
Albina Borisevich
Miaofang Chi
Amit Bhattacharya
Raphaële J. Clément
Alexei P Sokolov
Sheng Dai
author_facet Tao Wang
Jiyoung Ock
X. Chelsea Chen
Fan Wang
Meijia Li
Matthew S. Chambers
Gabriel M. Veith
Lauren B. Shepard
Susan B. Sinnott
Albina Borisevich
Miaofang Chi
Amit Bhattacharya
Raphaële J. Clément
Alexei P Sokolov
Sheng Dai
author_sort Tao Wang
collection DOAJ
description Abstract Inorganic fillers play an important role in improving the ionic conductivity of solid composite electrolytes (SCEs) for Li‐ion batteries. Among inorganic fillers, perovskite‐type lithium lanthanum titanate (LLTO) stands out for its high bulk Li+ conductivity on the order of 10−3 S cm−1 at room temperature. According to a literature survey, the optimal LLTO filler should possess the following characteristics: i) a single‐crystal structure to minimize grain boundaries; ii) a small particle size to increase the filler/polymer interface area; iii) a 1D morphology for efficient interface channels; and iv) cubic symmetry to facilitate rapid bulk Li+ diffusion within the filler. However, the synthesis of single crystal, 1D LLTO nanomaterials with cubic symmetry is challenging. Herein, a flux strategy is developed to synthesize La0.5M0.5TiO3 (LMTO, M═Li, Na, and K) single‐crystal nanorods with an A‐site‐disordered, cubic perovskite phase. The flux media promotes the oriented growth of nanorods, prevents nanorods from sintering, and provides multiple alkali metal ion doping at M sites to stabilize the cubic phase. SCEs compositing the Li+‐conducting LMTO nanorods as fillers and poly[vinylene carbonate‐co‐lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] matrix exhibit more than twice the conductivity of the neat polymer electrolyte (30.6 vs 14.0 µS cm−1 at 303 K).
format Article
id doaj-art-460638bb110045bd88bfbf47bfafd886
institution Kabale University
issn 2198-3844
language English
publishDate 2025-01-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-460638bb110045bd88bfbf47bfafd8862025-01-20T13:04:18ZengWileyAdvanced Science2198-38442025-01-01123n/an/a10.1002/advs.202408805Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite ElectrolytesTao Wang0Jiyoung Ock1X. Chelsea Chen2Fan Wang3Meijia Li4Matthew S. Chambers5Gabriel M. Veith6Lauren B. Shepard7Susan B. Sinnott8Albina Borisevich9Miaofang Chi10Amit Bhattacharya11Raphaële J. Clément12Alexei P Sokolov13Sheng Dai14Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USADepartment of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USADepartment of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USADepartment of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USACenter for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USACenter for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USAMaterials Department and Materials Research Laboratory University of California Santa Barbara CA 93106 USAMaterials Department and Materials Research Laboratory University of California Santa Barbara CA 93106 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAAbstract Inorganic fillers play an important role in improving the ionic conductivity of solid composite electrolytes (SCEs) for Li‐ion batteries. Among inorganic fillers, perovskite‐type lithium lanthanum titanate (LLTO) stands out for its high bulk Li+ conductivity on the order of 10−3 S cm−1 at room temperature. According to a literature survey, the optimal LLTO filler should possess the following characteristics: i) a single‐crystal structure to minimize grain boundaries; ii) a small particle size to increase the filler/polymer interface area; iii) a 1D morphology for efficient interface channels; and iv) cubic symmetry to facilitate rapid bulk Li+ diffusion within the filler. However, the synthesis of single crystal, 1D LLTO nanomaterials with cubic symmetry is challenging. Herein, a flux strategy is developed to synthesize La0.5M0.5TiO3 (LMTO, M═Li, Na, and K) single‐crystal nanorods with an A‐site‐disordered, cubic perovskite phase. The flux media promotes the oriented growth of nanorods, prevents nanorods from sintering, and provides multiple alkali metal ion doping at M sites to stabilize the cubic phase. SCEs compositing the Li+‐conducting LMTO nanorods as fillers and poly[vinylene carbonate‐co‐lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] matrix exhibit more than twice the conductivity of the neat polymer electrolyte (30.6 vs 14.0 µS cm−1 at 303 K).https://doi.org/10.1002/advs.202408805disordered structureflux synthesismolten saltsnanomaterialssolid composite electrolyte
spellingShingle Tao Wang
Jiyoung Ock
X. Chelsea Chen
Fan Wang
Meijia Li
Matthew S. Chambers
Gabriel M. Veith
Lauren B. Shepard
Susan B. Sinnott
Albina Borisevich
Miaofang Chi
Amit Bhattacharya
Raphaële J. Clément
Alexei P Sokolov
Sheng Dai
Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes
Advanced Science
disordered structure
flux synthesis
molten salts
nanomaterials
solid composite electrolyte
title Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes
title_full Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes
title_fullStr Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes
title_full_unstemmed Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes
title_short Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes
title_sort flux synthesis of a site disordered perovskite la0 5m0 5tio3 m═li na k nanorods tailored for solid composite electrolytes
topic disordered structure
flux synthesis
molten salts
nanomaterials
solid composite electrolyte
url https://doi.org/10.1002/advs.202408805
work_keys_str_mv AT taowang fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT jiyoungock fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT xchelseachen fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT fanwang fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT meijiali fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT matthewschambers fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT gabrielmveith fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT laurenbshepard fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT susanbsinnott fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT albinaborisevich fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT miaofangchi fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT amitbhattacharya fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT raphaelejclement fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT alexeipsokolov fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes
AT shengdai fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes