Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes
Abstract Inorganic fillers play an important role in improving the ionic conductivity of solid composite electrolytes (SCEs) for Li‐ion batteries. Among inorganic fillers, perovskite‐type lithium lanthanum titanate (LLTO) stands out for its high bulk Li+ conductivity on the order of 10−3 S cm−1 at r...
Saved in:
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2025-01-01
|
Series: | Advanced Science |
Subjects: | |
Online Access: | https://doi.org/10.1002/advs.202408805 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832593540330291200 |
---|---|
author | Tao Wang Jiyoung Ock X. Chelsea Chen Fan Wang Meijia Li Matthew S. Chambers Gabriel M. Veith Lauren B. Shepard Susan B. Sinnott Albina Borisevich Miaofang Chi Amit Bhattacharya Raphaële J. Clément Alexei P Sokolov Sheng Dai |
author_facet | Tao Wang Jiyoung Ock X. Chelsea Chen Fan Wang Meijia Li Matthew S. Chambers Gabriel M. Veith Lauren B. Shepard Susan B. Sinnott Albina Borisevich Miaofang Chi Amit Bhattacharya Raphaële J. Clément Alexei P Sokolov Sheng Dai |
author_sort | Tao Wang |
collection | DOAJ |
description | Abstract Inorganic fillers play an important role in improving the ionic conductivity of solid composite electrolytes (SCEs) for Li‐ion batteries. Among inorganic fillers, perovskite‐type lithium lanthanum titanate (LLTO) stands out for its high bulk Li+ conductivity on the order of 10−3 S cm−1 at room temperature. According to a literature survey, the optimal LLTO filler should possess the following characteristics: i) a single‐crystal structure to minimize grain boundaries; ii) a small particle size to increase the filler/polymer interface area; iii) a 1D morphology for efficient interface channels; and iv) cubic symmetry to facilitate rapid bulk Li+ diffusion within the filler. However, the synthesis of single crystal, 1D LLTO nanomaterials with cubic symmetry is challenging. Herein, a flux strategy is developed to synthesize La0.5M0.5TiO3 (LMTO, M═Li, Na, and K) single‐crystal nanorods with an A‐site‐disordered, cubic perovskite phase. The flux media promotes the oriented growth of nanorods, prevents nanorods from sintering, and provides multiple alkali metal ion doping at M sites to stabilize the cubic phase. SCEs compositing the Li+‐conducting LMTO nanorods as fillers and poly[vinylene carbonate‐co‐lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] matrix exhibit more than twice the conductivity of the neat polymer electrolyte (30.6 vs 14.0 µS cm−1 at 303 K). |
format | Article |
id | doaj-art-460638bb110045bd88bfbf47bfafd886 |
institution | Kabale University |
issn | 2198-3844 |
language | English |
publishDate | 2025-01-01 |
publisher | Wiley |
record_format | Article |
series | Advanced Science |
spelling | doaj-art-460638bb110045bd88bfbf47bfafd8862025-01-20T13:04:18ZengWileyAdvanced Science2198-38442025-01-01123n/an/a10.1002/advs.202408805Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite ElectrolytesTao Wang0Jiyoung Ock1X. Chelsea Chen2Fan Wang3Meijia Li4Matthew S. Chambers5Gabriel M. Veith6Lauren B. Shepard7Susan B. Sinnott8Albina Borisevich9Miaofang Chi10Amit Bhattacharya11Raphaële J. Clément12Alexei P Sokolov13Sheng Dai14Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USADepartment of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USADepartment of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USADepartment of Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USACenter for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USACenter for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USAMaterials Department and Materials Research Laboratory University of California Santa Barbara CA 93106 USAMaterials Department and Materials Research Laboratory University of California Santa Barbara CA 93106 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAChemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USAAbstract Inorganic fillers play an important role in improving the ionic conductivity of solid composite electrolytes (SCEs) for Li‐ion batteries. Among inorganic fillers, perovskite‐type lithium lanthanum titanate (LLTO) stands out for its high bulk Li+ conductivity on the order of 10−3 S cm−1 at room temperature. According to a literature survey, the optimal LLTO filler should possess the following characteristics: i) a single‐crystal structure to minimize grain boundaries; ii) a small particle size to increase the filler/polymer interface area; iii) a 1D morphology for efficient interface channels; and iv) cubic symmetry to facilitate rapid bulk Li+ diffusion within the filler. However, the synthesis of single crystal, 1D LLTO nanomaterials with cubic symmetry is challenging. Herein, a flux strategy is developed to synthesize La0.5M0.5TiO3 (LMTO, M═Li, Na, and K) single‐crystal nanorods with an A‐site‐disordered, cubic perovskite phase. The flux media promotes the oriented growth of nanorods, prevents nanorods from sintering, and provides multiple alkali metal ion doping at M sites to stabilize the cubic phase. SCEs compositing the Li+‐conducting LMTO nanorods as fillers and poly[vinylene carbonate‐co‐lithium sulfonyl(trifluoromethane sulfonyl)imide methacrylate] matrix exhibit more than twice the conductivity of the neat polymer electrolyte (30.6 vs 14.0 µS cm−1 at 303 K).https://doi.org/10.1002/advs.202408805disordered structureflux synthesismolten saltsnanomaterialssolid composite electrolyte |
spellingShingle | Tao Wang Jiyoung Ock X. Chelsea Chen Fan Wang Meijia Li Matthew S. Chambers Gabriel M. Veith Lauren B. Shepard Susan B. Sinnott Albina Borisevich Miaofang Chi Amit Bhattacharya Raphaële J. Clément Alexei P Sokolov Sheng Dai Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes Advanced Science disordered structure flux synthesis molten salts nanomaterials solid composite electrolyte |
title | Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes |
title_full | Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes |
title_fullStr | Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes |
title_full_unstemmed | Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes |
title_short | Flux Synthesis of A‐site Disordered Perovskite La0.5M0.5TiO3 (M═Li, Na, K) Nanorods Tailored for Solid Composite Electrolytes |
title_sort | flux synthesis of a site disordered perovskite la0 5m0 5tio3 m═li na k nanorods tailored for solid composite electrolytes |
topic | disordered structure flux synthesis molten salts nanomaterials solid composite electrolyte |
url | https://doi.org/10.1002/advs.202408805 |
work_keys_str_mv | AT taowang fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT jiyoungock fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT xchelseachen fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT fanwang fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT meijiali fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT matthewschambers fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT gabrielmveith fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT laurenbshepard fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT susanbsinnott fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT albinaborisevich fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT miaofangchi fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT amitbhattacharya fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT raphaelejclement fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT alexeipsokolov fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes AT shengdai fluxsynthesisofasitedisorderedperovskitela05m05tio3mlinaknanorodstailoredforsolidcompositeelectrolytes |