A Unified Phenomenological Model Captures Water Equilibrium and Kinetic Processes in Soil

Abstract Soil water sustains life on Earth, and how to quantify water equilibrium and kinetics in soil remains a challenge for over a century despite significant efforts. For example, various models were proposed to interpret non‐Darcian flow in saturated soils, but none of them can capture the full...

Full description

Saved in:
Bibliographic Details
Main Authors: Yong Zhang, Martinus Th. van Genuchten, Dongbao Zhou, Golden J. Zhang, HongGuang Sun
Format: Article
Language:English
Published: Wiley 2024-03-01
Series:Water Resources Research
Subjects:
Online Access:https://doi.org/10.1029/2023WR035782
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Soil water sustains life on Earth, and how to quantify water equilibrium and kinetics in soil remains a challenge for over a century despite significant efforts. For example, various models were proposed to interpret non‐Darcian flow in saturated soils, but none of them can capture the full range of non‐Darcian flow. To unify the different models into one overall framework and improve them if needed, this technical note proposes a theory based on the tempered stable density (TSD) assumption for the soil‐hydraulic property distribution, recognizing that the underlying hydrologic processes all occur in the same, albeit very complex and not measurable at all the relevant scales, soil‐water system. The TSD assumption forms a unified fractional‐derivative equation (FDE) using subordination. Preliminary applications show that simplified FDEs, with proposed hydrological interpretations and TSD distributed properties, effectively capture core equilibrium and kinetic water processes, spanning non‐Darcian flow, water retention, moisture movement, infiltration, and wetting/drying, in the soil‐water system with various degrees and scales of system heterogeneity. Model comparisons and evaluations suggest that the TSD may serve as a unified density for the properties of a broad range of soil‐water systems, driving multi‐rate mass, momentum, and energy equilibrium/kinetic processes often oversimplified by classical models as single‐rate processes.
ISSN:0043-1397
1944-7973