Topological electronic structure and transport properties of the distorted rutile-type WO2
We elucidate the transport properties and electronic structures of distorted rutile-type WO2. Electrical resistivity and Hall effect measurements of high-quality single crystals revealed the transport property characteristics of topological materials; these characteristics included an extremely larg...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2025-01-01
|
Series: | APL Materials |
Online Access: | http://dx.doi.org/10.1063/5.0233482 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We elucidate the transport properties and electronic structures of distorted rutile-type WO2. Electrical resistivity and Hall effect measurements of high-quality single crystals revealed the transport property characteristics of topological materials; these characteristics included an extremely large magnetoresistance of 13 200% (2 K and 9 T) and a very high carrier mobility of 25 700 cm2 V−1 s−1 (5 K). First-principles calculations revealed Dirac nodal lines (DNLs) near the Fermi energy in the electronic structure when spin–orbit interactions (SOIs) were absent. Although these DNLs mostly disappeared in the presence of SOIs, band crossings at high-symmetry points in the reciprocal space existed as Dirac points. Furthermore, DNLs protected by nonsymmorphic symmetry persisted on the ky = π/b plane. The unique transport properties originating from the topological electronic structure of chemically and thermally stable WO2 could represent an opportunity to investigate the potential electronic applications of the material. |
---|---|
ISSN: | 2166-532X |