Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases

We study compact embeddings for weighted spaces of Besov and Triebel-Lizorkin type where the weight belongs to some Muckenhoupt Ap class. This extends our previous results [25] to more general weights of logarithmically disturbed polynomial growth, both near some singular point and at infinity. We o...

Full description

Saved in:
Bibliographic Details
Main Authors: Dorothee D. Haroske, Leszek Skrzypczak
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2011/928962
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study compact embeddings for weighted spaces of Besov and Triebel-Lizorkin type where the weight belongs to some Muckenhoupt Ap class. This extends our previous results [25] to more general weights of logarithmically disturbed polynomial growth, both near some singular point and at infinity. We obtain sharp asymptotic estimates for the entropy numbers of this embedding. Essential tools are a discretisation in terms of wavelet bases, as well as a refined study of associated embeddings in sequence spaces and interpolation arguments in endpoint situations.
ISSN:0972-6802