Semi-visible jets, energy-based models, and self-supervision

We present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation a...

Full description

Saved in:
Bibliographic Details
Main Author: Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp
Format: Article
Language:English
Published: SciPost 2025-02-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.18.2.042
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832542889633120256
author Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp
author_facet Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp
author_sort Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp
collection DOAJ
description We present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation and evaluate the representations using a CLR-inspired anomaly score and a normalized autoencoder as density estimators. Our results show a remarkable sensitivity for a wide range of semi-visible jets and are more robust than a supervised classifier trained on a specific signal.
format Article
id doaj-art-453dc9e32f6b47129c2d7594eacb3f93
institution Kabale University
issn 2542-4653
language English
publishDate 2025-02-01
publisher SciPost
record_format Article
series SciPost Physics
spelling doaj-art-453dc9e32f6b47129c2d7594eacb3f932025-02-03T12:15:07ZengSciPostSciPost Physics2542-46532025-02-0118204210.21468/SciPostPhys.18.2.042Semi-visible jets, energy-based models, and self-supervisionLuigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan RüschkampWe present DarkCLR, a novel framework for detecting semi-visible jets at the LHC. DarkCLR uses a self-supervised contrastive-learning approach to create observables that are approximately invariant under relevant transformations. We use background-enhanced data to create a sensitive representation and evaluate the representations using a CLR-inspired anomaly score and a normalized autoencoder as density estimators. Our results show a remarkable sensitivity for a wide range of semi-visible jets and are more robust than a supervised classifier trained on a specific signal.https://scipost.org/SciPostPhys.18.2.042
spellingShingle Luigi Favaro, Michael Krämer, Tanmoy Modak, Tilman Plehn, Jan Rüschkamp
Semi-visible jets, energy-based models, and self-supervision
SciPost Physics
title Semi-visible jets, energy-based models, and self-supervision
title_full Semi-visible jets, energy-based models, and self-supervision
title_fullStr Semi-visible jets, energy-based models, and self-supervision
title_full_unstemmed Semi-visible jets, energy-based models, and self-supervision
title_short Semi-visible jets, energy-based models, and self-supervision
title_sort semi visible jets energy based models and self supervision
url https://scipost.org/SciPostPhys.18.2.042
work_keys_str_mv AT luigifavaromichaelkramertanmoymodaktilmanplehnjanruschkamp semivisiblejetsenergybasedmodelsandselfsupervision