Joint Optimization Algorithm for UAV-Assisted Caching and Charging Based on Wireless Energy Harvesting
The proliferation of mobile terminal applications and the increasing energy consumption of chips have raised concerns about insufficient power in mobile user terminals. In response to this issue, this paper proposes a joint optimization algorithm for UAV-assisted caching and charging based on non-or...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/7/3908 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The proliferation of mobile terminal applications and the increasing energy consumption of chips have raised concerns about insufficient power in mobile user terminals. In response to this issue, this paper proposes a joint optimization algorithm for UAV-assisted caching and charging based on non-orthogonal multiple access (NOMA) within the context of mobile edge caching scenarios. The proposed algorithm considers the revenue generated from UAVs providing caching and charging services to users, as well as the cost associated with leasing cache files and the UAV energy consumption. The optimization problem aimed at maximizing UAV utility is established under constraints related to power and cache capacity. To address this mixed-integer programming problem, we divided it into two parts. The first part uses the Stackelberg–Bertrand game to optimize file pricing and the UAV cache strategy. In the second part, the block coordinate descent (BCD) method is used to optimize the UAV transmission power distribution, positioning, and user pairing. The joint optimization problem is divided into three subproblems, which use the Lagrange multiplier method, a simulated annealing algorithm, and a particle swarm optimization algorithm. Simulation results demonstrate that the proposed algorithm effectively reduces user transmission delay while also improving overall revenue generated by UAVs. |
|---|---|
| ISSN: | 2076-3417 |