Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
The large volume and reduced dexterity of current surgical robotic systems are factors that restrict their effective performance. To improve the usefulness of surgical robots in minimally invasive surgery (MIS), a compact and accurate positioning mechanism, named Dionis, is proposed in this paper. T...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Applied Bionics and Biomechanics |
Online Access: | http://dx.doi.org/10.3233/ABB-2011-0020 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832561560016388096 |
---|---|
author | R. Beira L. Santos-Carreras G. Rognini H. Bleuler R. Clavel |
author_facet | R. Beira L. Santos-Carreras G. Rognini H. Bleuler R. Clavel |
author_sort | R. Beira |
collection | DOAJ |
description | The large volume and reduced dexterity of current surgical robotic systems are factors that restrict their effective performance. To improve the usefulness of surgical robots in minimally invasive surgery (MIS), a compact and accurate positioning mechanism, named Dionis, is proposed in this paper. This spatial hybrid mechanism based on a novel parallel kinematics is able to provide three rotations and one translation for single port procedures. The corresponding axes intersect at a remote center of rotation (RCM) that is the MIS entry port. Another important feature of the proposed positioning manipulator is that it can be placed below the operating table plane, allowing a quick and direct access to the patient, without removing the robotic system. This, besides saving precious space in the operating room, may improve safety over existing solutions. The conceptual design of Dionis is presented in this paper. Solutions for the inverse and direct kinematics are developed, as well as the analytical workspace and singularity analysis. Due to its unique design and kinematics, the proposed mechanism is highly compact, stiff and its dexterity fullfils the workspace specifications for MIS procedures. |
format | Article |
id | doaj-art-44d9c551fb8d4c7d8210b7e96fbc7e70 |
institution | Kabale University |
issn | 1176-2322 1754-2103 |
language | English |
publishDate | 2011-01-01 |
publisher | Wiley |
record_format | Article |
series | Applied Bionics and Biomechanics |
spelling | doaj-art-44d9c551fb8d4c7d8210b7e96fbc7e702025-02-03T01:24:39ZengWileyApplied Bionics and Biomechanics1176-23221754-21032011-01-018219120810.3233/ABB-2011-0020Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive SurgeryR. Beira0L. Santos-Carreras1G. Rognini2H. Bleuler3R. Clavel4Laboratoire de Systèmes Robotiques, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SwitzerlandLaboratoire de Systèmes Robotiques, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SwitzerlandLaboratoire de Systèmes Robotiques, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SwitzerlandLaboratoire de Systèmes Robotiques, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SwitzerlandLaboratoire de Systèmes Robotiques, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, SwitzerlandThe large volume and reduced dexterity of current surgical robotic systems are factors that restrict their effective performance. To improve the usefulness of surgical robots in minimally invasive surgery (MIS), a compact and accurate positioning mechanism, named Dionis, is proposed in this paper. This spatial hybrid mechanism based on a novel parallel kinematics is able to provide three rotations and one translation for single port procedures. The corresponding axes intersect at a remote center of rotation (RCM) that is the MIS entry port. Another important feature of the proposed positioning manipulator is that it can be placed below the operating table plane, allowing a quick and direct access to the patient, without removing the robotic system. This, besides saving precious space in the operating room, may improve safety over existing solutions. The conceptual design of Dionis is presented in this paper. Solutions for the inverse and direct kinematics are developed, as well as the analytical workspace and singularity analysis. Due to its unique design and kinematics, the proposed mechanism is highly compact, stiff and its dexterity fullfils the workspace specifications for MIS procedures.http://dx.doi.org/10.3233/ABB-2011-0020 |
spellingShingle | R. Beira L. Santos-Carreras G. Rognini H. Bleuler R. Clavel Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery Applied Bionics and Biomechanics |
title | Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery |
title_full | Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery |
title_fullStr | Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery |
title_full_unstemmed | Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery |
title_short | Dionis: A Novel Remote-Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery |
title_sort | dionis a novel remote center of motion parallel manipulator for minimally invasive surgery |
url | http://dx.doi.org/10.3233/ABB-2011-0020 |
work_keys_str_mv | AT rbeira dionisanovelremotecenterofmotionparallelmanipulatorforminimallyinvasivesurgery AT lsantoscarreras dionisanovelremotecenterofmotionparallelmanipulatorforminimallyinvasivesurgery AT grognini dionisanovelremotecenterofmotionparallelmanipulatorforminimallyinvasivesurgery AT hbleuler dionisanovelremotecenterofmotionparallelmanipulatorforminimallyinvasivesurgery AT rclavel dionisanovelremotecenterofmotionparallelmanipulatorforminimallyinvasivesurgery |