Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide Interlayers
Abstract This study investigates thermal transport across nanocrystalline diamond/AlGaN (aluminum gallium nitride) interfaces, crucial for enhancing thermal management in AlGaN‐based electronic devices. Chemical vapor deposition growth of diamond directly on AlGaN resulted in a disordered interface...
Saved in:
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2025-02-01
|
Series: | Advanced Materials Interfaces |
Subjects: | |
Online Access: | https://doi.org/10.1002/admi.202400575 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832542889408724992 |
---|---|
author | Henry T. Aller Thomas W. Pfeifer Abdullah Mamun Kenny Huynh Marko Tadjer Tatyana Feygelson Karl Hobart Travis Anderson Bradford Pate Alan Jacobs James Spencer Lundh Mark Goorsky Asif Khan Patrick Hopkins Samuel Graham |
author_facet | Henry T. Aller Thomas W. Pfeifer Abdullah Mamun Kenny Huynh Marko Tadjer Tatyana Feygelson Karl Hobart Travis Anderson Bradford Pate Alan Jacobs James Spencer Lundh Mark Goorsky Asif Khan Patrick Hopkins Samuel Graham |
author_sort | Henry T. Aller |
collection | DOAJ |
description | Abstract This study investigates thermal transport across nanocrystalline diamond/AlGaN (aluminum gallium nitride) interfaces, crucial for enhancing thermal management in AlGaN‐based electronic devices. Chemical vapor deposition growth of diamond directly on AlGaN resulted in a disordered interface with a high thermal boundary resistance (TBR) of 20.6 m2‐KGW−1. Sputtered carbide interlayers of boron carbide (B4C), silicon carbide (SiC), and a mixture of boron carbide and silicon carbide (B4C/SiC) are employed to reduce thermal boundary resistance in diamond/AlGaN interfaces. The carbide interlayers resulted in record‐low thermal boundary resistance values of 3.4 and 3.7 m2‐KGW−1 for Al0.65Ga0.35N samples with B4C and SiC interlayers, respectively. STEM imaging of the interface reveals interlayer thicknesses between 1.7 and 2.5 nm, with an amorphous structure. Additionally, Fast‐Fourier Transform (FFT) characterization of sections of the STEM images displayed sharp crystalline fringes in the AlGaN layer, confirming it is properly protected from damage from hydrogen plasma during the diamond growth. In order to accurately measure the thermal boundary resistance we develop a hybrid technique, combining time‐domain thermoreflectance and steady‐state thermoreflectance fitting, offering superior sensitivity to buried thermal resistances. The findings underscore the efficacy of interlayer engineering in enhancing thermal transport and demonstrate the importance of innovative measurement techniques in accurately characterizing complex thermal interfaces. This study provides a foundation for future research in improving thermal properties of semiconductor devices through interface engineering and advanced measurement methodologies. |
format | Article |
id | doaj-art-449a9e336f854331812008cc9f765863 |
institution | Kabale University |
issn | 2196-7350 |
language | English |
publishDate | 2025-02-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Materials Interfaces |
spelling | doaj-art-449a9e336f854331812008cc9f7658632025-02-03T13:24:05ZengWiley-VCHAdvanced Materials Interfaces2196-73502025-02-01123n/an/a10.1002/admi.202400575Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide InterlayersHenry T. Aller0Thomas W. Pfeifer1Abdullah Mamun2Kenny Huynh3Marko Tadjer4Tatyana Feygelson5Karl Hobart6Travis Anderson7Bradford Pate8Alan Jacobs9James Spencer Lundh10Mark Goorsky11Asif Khan12Patrick Hopkins13Samuel Graham14Department of Mechanical Engineering University of Maryland College Park MD 20742 USADepartment of Mechanical Engineering University of Virginia Charlottesville VA 22903 USADepartment of Electrical Engineering University of South Carolina Columbia SC 29208 USADepartment of Material Science and Engineering University of California Los Angeles Los Angeles CA 90095 USAUS Naval Research Laboratory Washington DC 20375 USAUS Naval Research Laboratory Washington DC 20375 USAUS Naval Research Laboratory Washington DC 20375 USAUS Naval Research Laboratory Washington DC 20375 USAUS Naval Research Laboratory Washington DC 20375 USAUS Naval Research Laboratory Washington DC 20375 USAUS Naval Research Laboratory Washington DC 20375 USADepartment of Material Science and Engineering University of California Los Angeles Los Angeles CA 90095 USADepartment of Electrical Engineering University of South Carolina Columbia SC 29208 USADepartment of Mechanical Engineering University of Virginia Charlottesville VA 22903 USADepartment of Mechanical Engineering University of Maryland College Park MD 20742 USAAbstract This study investigates thermal transport across nanocrystalline diamond/AlGaN (aluminum gallium nitride) interfaces, crucial for enhancing thermal management in AlGaN‐based electronic devices. Chemical vapor deposition growth of diamond directly on AlGaN resulted in a disordered interface with a high thermal boundary resistance (TBR) of 20.6 m2‐KGW−1. Sputtered carbide interlayers of boron carbide (B4C), silicon carbide (SiC), and a mixture of boron carbide and silicon carbide (B4C/SiC) are employed to reduce thermal boundary resistance in diamond/AlGaN interfaces. The carbide interlayers resulted in record‐low thermal boundary resistance values of 3.4 and 3.7 m2‐KGW−1 for Al0.65Ga0.35N samples with B4C and SiC interlayers, respectively. STEM imaging of the interface reveals interlayer thicknesses between 1.7 and 2.5 nm, with an amorphous structure. Additionally, Fast‐Fourier Transform (FFT) characterization of sections of the STEM images displayed sharp crystalline fringes in the AlGaN layer, confirming it is properly protected from damage from hydrogen plasma during the diamond growth. In order to accurately measure the thermal boundary resistance we develop a hybrid technique, combining time‐domain thermoreflectance and steady‐state thermoreflectance fitting, offering superior sensitivity to buried thermal resistances. The findings underscore the efficacy of interlayer engineering in enhancing thermal transport and demonstrate the importance of innovative measurement techniques in accurately characterizing complex thermal interfaces. This study provides a foundation for future research in improving thermal properties of semiconductor devices through interface engineering and advanced measurement methodologies.https://doi.org/10.1002/admi.202400575electrical devicesnanocrystalline diamond growththermal managementthermal transport at interfacesultra‐wide bandgap |
spellingShingle | Henry T. Aller Thomas W. Pfeifer Abdullah Mamun Kenny Huynh Marko Tadjer Tatyana Feygelson Karl Hobart Travis Anderson Bradford Pate Alan Jacobs James Spencer Lundh Mark Goorsky Asif Khan Patrick Hopkins Samuel Graham Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide Interlayers Advanced Materials Interfaces electrical devices nanocrystalline diamond growth thermal management thermal transport at interfaces ultra‐wide bandgap |
title | Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide Interlayers |
title_full | Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide Interlayers |
title_fullStr | Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide Interlayers |
title_full_unstemmed | Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide Interlayers |
title_short | Low Thermal Resistance of Diamond‐AlGaN Interfaces Achieved Using Carbide Interlayers |
title_sort | low thermal resistance of diamond algan interfaces achieved using carbide interlayers |
topic | electrical devices nanocrystalline diamond growth thermal management thermal transport at interfaces ultra‐wide bandgap |
url | https://doi.org/10.1002/admi.202400575 |
work_keys_str_mv | AT henrytaller lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT thomaswpfeifer lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT abdullahmamun lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT kennyhuynh lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT markotadjer lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT tatyanafeygelson lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT karlhobart lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT travisanderson lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT bradfordpate lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT alanjacobs lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT jamesspencerlundh lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT markgoorsky lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT asifkhan lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT patrickhopkins lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers AT samuelgraham lowthermalresistanceofdiamondalganinterfacesachievedusingcarbideinterlayers |