Spatiotemporal Characteristics of Mesoscale Convective Systems in the Yangtze River Delta Urban Agglomeration and Their Response to Urbanization

Mesoscale convective systems (MCSs) are major contributors to extreme precipitation in urban agglomerations, exhibiting complex characteristics influenced by large-scale climate variability and local urban processes. This study utilizes a high-resolution MCS database spanning from 2001 to 2020 to in...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinguan Du, Tianwen Sun, Kyaw Than Oo
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/3/245
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mesoscale convective systems (MCSs) are major contributors to extreme precipitation in urban agglomerations, exhibiting complex characteristics influenced by large-scale climate variability and local urban processes. This study utilizes a high-resolution MCS database spanning from 2001 to 2020 to investigate the spatiotemporal variations of MCSs in the Yangtze River Delta (YRD) urban agglomeration and assess their response to urbanization. Our analysis reveals significant spatial and temporal differences in MCS activities during the warm season (April to September), including initiation, movement, and lifespan, with notable trends observed over the study period. MCSs are found to contribute substantially to hourly extreme precipitation, accounting for approximately 60%, which exceeds their contribution to total precipitation. Furthermore, the role of MCSs in extreme precipitation has also increased, driven by the intensification of MCS-induced extreme rainfall. Additionally, MCS characteristics exhibit significant regional differences. Urban areas experience more pronounced changes in MCS activity and precipitation compared to the surrounding rural regions. Specifically, urbanization contributes approximately 16% to MCS-related precipitation and 19% to MCS initiation, highlighting its substantial role in enhancing these processes. Moreover, mountainous areas and water bodies surrounding cities show stronger trends in certain MCS characteristics than urban and rural plains. This may be attributed to climatological conditions that favor MCS activity in these regions, as well as the complex interactions between urbanization, topography, and land–sea contrasts. These complicated dynamics warrant further investigation to better understand their implications.
ISSN:2073-4433