A Deep-Learning Method for Remaining Useful Life Prediction of Power Machinery via Dual-Attention Mechanism

Remaining useful life (RUL) prediction is a cornerstone of Prognostic and Health Management (PHM) for power machinery, playing a crucial role in ensuring the reliability and safety of these critical systems. In recent years, deep learning techniques have shown great promise in RUL prediction, provid...

Full description

Saved in:
Bibliographic Details
Main Authors: Fan Wang, Aihua Liu, Chunyang Qu, Ruolan Xiong, Lu Chen
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/497
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Remaining useful life (RUL) prediction is a cornerstone of Prognostic and Health Management (PHM) for power machinery, playing a crucial role in ensuring the reliability and safety of these critical systems. In recent years, deep learning techniques have shown great promise in RUL prediction, providing more reliable and accurate outcomes. However, existing models often struggle with comprehensive feature extraction, especially in capturing the complex behavior of power machinery, where non-linear degradation patterns arise under varying operational conditions. To tackle this limitation, we propose a multi-feature fusion model leveraging a dual-attention mechanism. Initially, convolutional neural networks (CNNs) and channel attention mechanisms are employed to preliminarily extract spatial features. Subsequently, a layer combining a Gate Recurrent Unit (GRU) and self-attention mechanisms is used to further extract and integrate temporal features. Finally, RUL values are predicted via regression. The effectiveness of the proposed method was validated on C-MAPSS datasets, and its superior performance in RUL prediction was demonstrated through comparative analysis with other methods.
ISSN:1424-8220