Global Bifurcation Structure of a Predator-Prey System with a Spatial Degeneracy and B-D Functional Response
In this paper, we investigate a predator-prey system with Beddington–DeAngelis (B-D) functional response in a spatially degenerate heterogeneous environment. First, for the case of the weak growth rate on the prey (λ1Ω<a<λ1Ω0), a priori estimates on any positive steady-state solutions are esta...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2021/9970255 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate a predator-prey system with Beddington–DeAngelis (B-D) functional response in a spatially degenerate heterogeneous environment. First, for the case of the weak growth rate on the prey (λ1Ω<a<λ1Ω0), a priori estimates on any positive steady-state solutions are established by the comparison principle; two local bifurcation solution branches depending on the bifurcation parameter are obtained by local bifurcation theory. Moreover, the demonstrated two local bifurcation solution branches can be extended to a bounded global bifurcation curve by the global bifurcation theory. Second, for the case of the strong growth rate on the prey (a>λ1Ω0), a priori estimates on any positive steady-state solutions are obtained by applying reduction to absurdity and the set of positive steady-state solutions forms an unbounded global bifurcation curve by the global bifurcation theory. In the end, discussions on the difference of the solution properties between the traditional predator-prey system and the predator-prey system with a spatial degeneracy and B-D functional response are addressed. |
---|---|
ISSN: | 1076-2787 1099-0526 |