Swelling Behavior, Biocompatibility, and Controlled Delivery of Sodium–Diclofenac in New Temperature-Responsive P(OEGMA/OPGMA) Copolymeric Hydrogels

This study investigates the synthesis and properties of innovative poly(oligo(alkylene glycol)) methacrylate hydrogels synthesized via gamma radiation-induced copolymerization and the crosslinking of oligo(ethylene glycol) methacrylate (OEGMA) and oligo(propylene glycol) methacrylate (OPGMA) at vary...

Full description

Saved in:
Bibliographic Details
Main Authors: Zorana Rogic Miladinovic, Maja Krstic, Edin Suljovrujic
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/11/3/201
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the synthesis and properties of innovative poly(oligo(alkylene glycol)) methacrylate hydrogels synthesized via gamma radiation-induced copolymerization and the crosslinking of oligo(ethylene glycol) methacrylate (OEGMA) and oligo(propylene glycol) methacrylate (OPGMA) at varying mole fractions. Our primary objective is to investigate the impact of copolymerization on the swelling properties of P(OEGMA/OPGMA) hydrogels compared to their homopolymeric counterparts, namely, POEGMA and POPGMA, which exhibit distinct volume phase transition temperatures (<i>VPTT</i>s) of around 70 and 13 °C, respectively, under physiological conditions. To this end, a comprehensive library of smart methacrylate-based hydrogel biomaterials was developed, featuring detailed data on their swelling behavior across different copolymer molar ratios and physiological temperature ranges. To achieve these objectives, we conducted swelling behavior analysis across a wide range of temperatures, assessed the pH sensitivity of hydrogels, utilized scanning electron microscopy for morphological characterization, performed in vitro biocompatibility assessment through cell viability and hemolysis assays, and employed diclofenac sodium as a model drug to control drug delivery testing. Our findings demonstrate that the newly synthesized P(OEGMA<sub>40</sub>/OPGMA<sub>60</sub>) copolymeric hydrogel exhibits desirable characteristics, with <i>VPTT</i> close to the physiological temperatures required for controlled drug delivery applications.
ISSN:2310-2861