High-Order Sliding Mode-Based Synchronous Control of a Novel Stair-Climbing Wheelchair Robot

For the attitude control of a novel stair-climbing wheelchair with inertial uncertainties and external disturbance torques, a new synchronous control method is proposed via combing high-order sliding mode control techniques with cross-coupling techniques. For this purpose, a proper controller is des...

Full description

Saved in:
Bibliographic Details
Main Authors: Juanxiu Liu, Yifei Wu, Jian Guo, Qingwei Chen
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2015/680809
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the attitude control of a novel stair-climbing wheelchair with inertial uncertainties and external disturbance torques, a new synchronous control method is proposed via combing high-order sliding mode control techniques with cross-coupling techniques. For this purpose, a proper controller is designed, which can improve the performance of the system under conditions of uncertainties and torque perturbations and also can guarantee the synchronization of the system. Firstly, a robust high-order sliding mode control law is designed to track the desired position trajectories effectively. Secondly, considering the coordination of the multiple joints, a high-order sliding mode synchronization controller is designed to reduce the synchronization errors and tracking errors based on the controller designed previously. Stability of the closed-loop system is proved by Lyapunov theory. The simulation is performed by MATLAB to verify the effectiveness of the proposed controller. By comparing the simulation results of two controllers, it is obvious that the proposed scheme has better performance and stronger robustness.
ISSN:1687-5249
1687-5257