Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia

<b>Background/Objectives:</b> The rise of multidrug-resistant (MDR) infections demands personalized antibiotic strategies for febrile neutropenia (FN) in hematological malignancies. This study investigates machine learning (ML) for identifying patient profiles with increased susceptibili...

Full description

Saved in:
Bibliographic Details
Main Authors: Antonio Gallardo-Pizarro, Christian Teijón-Lumbreras, Patricia Monzo-Gallo, Tommaso Francesco Aiello, Mariana Chumbita, Olivier Peyrony, Emmanuelle Gras, Cristina Pitart, Josep Mensa, Jordi Esteve, Alex Soriano, Carolina Garcia-Vidal
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Antibiotics
Subjects:
Online Access:https://www.mdpi.com/2079-6382/14/1/13
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589319162822656
author Antonio Gallardo-Pizarro
Christian Teijón-Lumbreras
Patricia Monzo-Gallo
Tommaso Francesco Aiello
Mariana Chumbita
Olivier Peyrony
Emmanuelle Gras
Cristina Pitart
Josep Mensa
Jordi Esteve
Alex Soriano
Carolina Garcia-Vidal
author_facet Antonio Gallardo-Pizarro
Christian Teijón-Lumbreras
Patricia Monzo-Gallo
Tommaso Francesco Aiello
Mariana Chumbita
Olivier Peyrony
Emmanuelle Gras
Cristina Pitart
Josep Mensa
Jordi Esteve
Alex Soriano
Carolina Garcia-Vidal
author_sort Antonio Gallardo-Pizarro
collection DOAJ
description <b>Background/Objectives:</b> The rise of multidrug-resistant (MDR) infections demands personalized antibiotic strategies for febrile neutropenia (FN) in hematological malignancies. This study investigates machine learning (ML) for identifying patient profiles with increased susceptibility to bloodstream infections (BSI) during FN onset, aiming to tailor treatment approaches. <b>Methods:</b> From January 2020 to June 2022, we used the unsupervised ML algorithm KAMILA to analyze data from hospitalized hematological malignancy patients. Eleven features categorized clinical phenotypes and determined BSI and multidrug-resistant Gram-negative bacilli (MDR-GNB) prevalences at FN onset. Model performance was evaluated with a validation cohort from July 2022 to March 2023. <b>Results:</b> Among 462 FN episodes analyzed in the development cohort, 116 (25.1%) had BSIs. KAMILA’s stratification identified three risk clusters: Cluster 1 (low risk), Cluster 2 (intermediate risk), and Cluster 3 (high risk). Cluster 2 (28.4% of episodes) and Cluster 3 (43.7%) exhibited higher BSI rates of 26.7% and 37.6% and GNB BSI rates of 13.4% and 19.3%, respectively. Cluster 3 had a higher incidence of MDR-GNB BSIs, accounting for 75% of all MDR-GNB BSIs. Cluster 1 (27.9% of episodes) showed a lower BSI risk (<1%) with no GNB infections. Validation cohort results were similar: Cluster 3 had a BSI rate of 38.1%, including 78% of all MDR-GNB BSIs, while Cluster 1 had no GNB-related BSIs. <b>Conclusions:</b> Unsupervised ML-based risk stratification enhances evidence-driven decision-making for empiric antibiotic therapies at FN onset, crucial in an era of rising multi-drug resistance.
format Article
id doaj-art-4294d1c9df214beb9b2d01af83a6010a
institution Kabale University
issn 2079-6382
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Antibiotics
spelling doaj-art-4294d1c9df214beb9b2d01af83a6010a2025-01-24T13:18:32ZengMDPI AGAntibiotics2079-63822024-12-011411310.3390/antibiotics14010013Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile NeutropeniaAntonio Gallardo-Pizarro0Christian Teijón-Lumbreras1Patricia Monzo-Gallo2Tommaso Francesco Aiello3Mariana Chumbita4Olivier Peyrony5Emmanuelle Gras6Cristina Pitart7Josep Mensa8Jordi Esteve9Alex Soriano10Carolina Garcia-Vidal11Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Microbiology, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Hematology, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, SpainDepartment of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, 08036 Barcelona, Spain<b>Background/Objectives:</b> The rise of multidrug-resistant (MDR) infections demands personalized antibiotic strategies for febrile neutropenia (FN) in hematological malignancies. This study investigates machine learning (ML) for identifying patient profiles with increased susceptibility to bloodstream infections (BSI) during FN onset, aiming to tailor treatment approaches. <b>Methods:</b> From January 2020 to June 2022, we used the unsupervised ML algorithm KAMILA to analyze data from hospitalized hematological malignancy patients. Eleven features categorized clinical phenotypes and determined BSI and multidrug-resistant Gram-negative bacilli (MDR-GNB) prevalences at FN onset. Model performance was evaluated with a validation cohort from July 2022 to March 2023. <b>Results:</b> Among 462 FN episodes analyzed in the development cohort, 116 (25.1%) had BSIs. KAMILA’s stratification identified three risk clusters: Cluster 1 (low risk), Cluster 2 (intermediate risk), and Cluster 3 (high risk). Cluster 2 (28.4% of episodes) and Cluster 3 (43.7%) exhibited higher BSI rates of 26.7% and 37.6% and GNB BSI rates of 13.4% and 19.3%, respectively. Cluster 3 had a higher incidence of MDR-GNB BSIs, accounting for 75% of all MDR-GNB BSIs. Cluster 1 (27.9% of episodes) showed a lower BSI risk (<1%) with no GNB infections. Validation cohort results were similar: Cluster 3 had a BSI rate of 38.1%, including 78% of all MDR-GNB BSIs, while Cluster 1 had no GNB-related BSIs. <b>Conclusions:</b> Unsupervised ML-based risk stratification enhances evidence-driven decision-making for empiric antibiotic therapies at FN onset, crucial in an era of rising multi-drug resistance.https://www.mdpi.com/2079-6382/14/1/13febrile neutropeniabloodstream infectionshematological malignanciesmachine learningKAMILA
spellingShingle Antonio Gallardo-Pizarro
Christian Teijón-Lumbreras
Patricia Monzo-Gallo
Tommaso Francesco Aiello
Mariana Chumbita
Olivier Peyrony
Emmanuelle Gras
Cristina Pitart
Josep Mensa
Jordi Esteve
Alex Soriano
Carolina Garcia-Vidal
Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia
Antibiotics
febrile neutropenia
bloodstream infections
hematological malignancies
machine learning
KAMILA
title Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia
title_full Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia
title_fullStr Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia
title_full_unstemmed Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia
title_short Development and Validation of a Machine Learning Model for the Prediction of Bloodstream Infections in Patients with Hematological Malignancies and Febrile Neutropenia
title_sort development and validation of a machine learning model for the prediction of bloodstream infections in patients with hematological malignancies and febrile neutropenia
topic febrile neutropenia
bloodstream infections
hematological malignancies
machine learning
KAMILA
url https://www.mdpi.com/2079-6382/14/1/13
work_keys_str_mv AT antoniogallardopizarro developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT christianteijonlumbreras developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT patriciamonzogallo developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT tommasofrancescoaiello developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT marianachumbita developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT olivierpeyrony developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT emmanuellegras developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT cristinapitart developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT josepmensa developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT jordiesteve developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT alexsoriano developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia
AT carolinagarciavidal developmentandvalidationofamachinelearningmodelforthepredictionofbloodstreaminfectionsinpatientswithhematologicalmalignanciesandfebrileneutropenia