Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations
This paper studies the Euler-Maxwell system which is a model of a collisionless plasma. By energy estimation and the curl-div decomposition of the gradient, we rigorously justify a singular approximation of the incompressible Euler equations via a quasi-neutral regime.
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2011-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2011/942024 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832562940670115840 |
---|---|
author | Jianwei Yang Hongli Wang |
author_facet | Jianwei Yang Hongli Wang |
author_sort | Jianwei Yang |
collection | DOAJ |
description | This paper studies the Euler-Maxwell system which is a model of a collisionless plasma. By energy estimation and the curl-div decomposition of the gradient, we rigorously justify a singular approximation of the incompressible Euler equations via a quasi-neutral regime. |
format | Article |
id | doaj-art-42736a22693f4467b7e287c449e972b4 |
institution | Kabale University |
issn | 1110-757X 1687-0042 |
language | English |
publishDate | 2011-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Applied Mathematics |
spelling | doaj-art-42736a22693f4467b7e287c449e972b42025-02-03T01:21:24ZengWileyJournal of Applied Mathematics1110-757X1687-00422011-01-01201110.1155/2011/942024942024Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler EquationsJianwei Yang0Hongli Wang1College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, ChinaCollege of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, ChinaThis paper studies the Euler-Maxwell system which is a model of a collisionless plasma. By energy estimation and the curl-div decomposition of the gradient, we rigorously justify a singular approximation of the incompressible Euler equations via a quasi-neutral regime.http://dx.doi.org/10.1155/2011/942024 |
spellingShingle | Jianwei Yang Hongli Wang Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations Journal of Applied Mathematics |
title | Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations |
title_full | Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations |
title_fullStr | Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations |
title_full_unstemmed | Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations |
title_short | Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations |
title_sort | convergence of a singular euler maxwell approximation of the incompressible euler equations |
url | http://dx.doi.org/10.1155/2011/942024 |
work_keys_str_mv | AT jianweiyang convergenceofasingulareulermaxwellapproximationoftheincompressibleeulerequations AT hongliwang convergenceofasingulareulermaxwellapproximationoftheincompressibleeulerequations |