Surface Plasmon-Induced Band Gap in the Photocurrent Response of Organic Solar Cells

A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene [6,6]-phenyl C61-butyric (PCBM) was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-...

Full description

Saved in:
Bibliographic Details
Main Authors: Ribal Georges Sabat, Marcos Jose Leite Santos, Paul Rochon
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2010/698718
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene [6,6]-phenyl C61-butyric (PCBM) was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs) with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.
ISSN:1110-662X
1687-529X