The Comprehensive Study of Electrical Faults in PV Arrays
The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency, and safety in PV systems and, if not detected, may not only reduc...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Journal of Electrical and Computer Engineering |
Online Access: | http://dx.doi.org/10.1155/2016/8712960 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency, and safety in PV systems and, if not detected, may not only reduce power generation and accelerated system aging but also threaten the availability of the whole system. Due to the current-limiting nature and nonlinear output characteristics of PV arrays, faults in PV arrays may not be detected. In this paper, all possible faults that happen in the PV system have been classified and six common faults (shading condition, open-circuit fault, degradation fault, line-to-line fault, bypass diode fault, and bridging fault) have been implemented in 7.5 KW PV farm. Based on the simulation results, both normal operational curves and fault curves have been compared. |
---|---|
ISSN: | 2090-0147 2090-0155 |