Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beads

Abstract Background The prognosis of a plasma cell neoplasm (PCN) varies depending on the presence of genetic abnormalities. However, detecting sensitive genetic mutations poses challenges due to the heterogeneous nature of the cell population in bone marrow aspiration. The established gold standard...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Jeong Choi, Jaeguk Choi, Yehyun Kang, Saeam Shin, Seung-Tae Lee, Jong Rak Choi
Format: Article
Language:English
Published: BMC 2025-01-01
Series:Cancer Cell International
Subjects:
Online Access:https://doi.org/10.1186/s12935-025-03647-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832594399823921152
author Yu Jeong Choi
Jaeguk Choi
Yehyun Kang
Saeam Shin
Seung-Tae Lee
Jong Rak Choi
author_facet Yu Jeong Choi
Jaeguk Choi
Yehyun Kang
Saeam Shin
Seung-Tae Lee
Jong Rak Choi
author_sort Yu Jeong Choi
collection DOAJ
description Abstract Background The prognosis of a plasma cell neoplasm (PCN) varies depending on the presence of genetic abnormalities. However, detecting sensitive genetic mutations poses challenges due to the heterogeneous nature of the cell population in bone marrow aspiration. The established gold standard for cell sorting is fluorescence-activated cell sorting (FACS), which is associated with lengthy processing times, substantial cell quantities, and expensive equipment. Magnetic-activated cell sorting (MACS) can be performed without the need for FACS equipment and allows for rapid sorting of many cells, making it a practical alternative. Our objective is to conduct a comparative analysis of these two sorting techniques to assess whether MACS can viably replace FACS in clinical applications. Methods Plasma cell purity, fluorescence in situ hybridization (FISH), and next-generation sequencing analyses were performed on FACS- and MACS-sorted bone marrow samples from 31 PCN patients. Results The MACS-sorted samples yielded a higher percentage of plasma cells than FACS-sorted samples under microscopy (p = 0.0156) and flow cytometry (p = 0.0313). FISH performed by two methods in 10 samples showed the same results, and the proportion of abnormal cells was significantly higher in MACS than in FACS (p = 0.001). Wilcoxon matched-pairs signed rank test analysis showed that the median of differences of variant allele frequency (VAF) of two methods (VAF of MACS minus VAF of FACS) in the DNMT3A, TET2, and ASXL1 (DTA) group was − 0.006555 (p = 0.0020), while that in the non-DTA group was 0.002805 (p = 0.0019). Ten copy number variants (CNVs) were found in both FACS- and MACS-sorted samples, eight were identified only in MACS-sorted samples, and one was detected only in FACS-sorted samples. Conclusion Our study demonstrates that MACS is a viable alternative for plasma cell sorting in bone marrow samples of patients with PCN.
format Article
id doaj-art-41e37cb06d644f4baa235b445a7261d0
institution Kabale University
issn 1475-2867
language English
publishDate 2025-01-01
publisher BMC
record_format Article
series Cancer Cell International
spelling doaj-art-41e37cb06d644f4baa235b445a7261d02025-01-19T12:39:33ZengBMCCancer Cell International1475-28672025-01-012511710.1186/s12935-025-03647-8Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beadsYu Jeong Choi0Jaeguk Choi1Yehyun Kang2Saeam Shin3Seung-Tae Lee4Jong Rak Choi5Department of Laboratory Medicine, Yonsei University College of MedicineDepartment of Laboratory Medicine, Severance HospitalGraduate School of Medical Science, Brain Korea 21 PLUS Project, Yonsei University College of MedicineDepartment of Laboratory Medicine, Yonsei University College of MedicineDepartment of Laboratory Medicine, Yonsei University College of MedicineDepartment of Laboratory Medicine, Yonsei University College of MedicineAbstract Background The prognosis of a plasma cell neoplasm (PCN) varies depending on the presence of genetic abnormalities. However, detecting sensitive genetic mutations poses challenges due to the heterogeneous nature of the cell population in bone marrow aspiration. The established gold standard for cell sorting is fluorescence-activated cell sorting (FACS), which is associated with lengthy processing times, substantial cell quantities, and expensive equipment. Magnetic-activated cell sorting (MACS) can be performed without the need for FACS equipment and allows for rapid sorting of many cells, making it a practical alternative. Our objective is to conduct a comparative analysis of these two sorting techniques to assess whether MACS can viably replace FACS in clinical applications. Methods Plasma cell purity, fluorescence in situ hybridization (FISH), and next-generation sequencing analyses were performed on FACS- and MACS-sorted bone marrow samples from 31 PCN patients. Results The MACS-sorted samples yielded a higher percentage of plasma cells than FACS-sorted samples under microscopy (p = 0.0156) and flow cytometry (p = 0.0313). FISH performed by two methods in 10 samples showed the same results, and the proportion of abnormal cells was significantly higher in MACS than in FACS (p = 0.001). Wilcoxon matched-pairs signed rank test analysis showed that the median of differences of variant allele frequency (VAF) of two methods (VAF of MACS minus VAF of FACS) in the DNMT3A, TET2, and ASXL1 (DTA) group was − 0.006555 (p = 0.0020), while that in the non-DTA group was 0.002805 (p = 0.0019). Ten copy number variants (CNVs) were found in both FACS- and MACS-sorted samples, eight were identified only in MACS-sorted samples, and one was detected only in FACS-sorted samples. Conclusion Our study demonstrates that MACS is a viable alternative for plasma cell sorting in bone marrow samples of patients with PCN.https://doi.org/10.1186/s12935-025-03647-8Plasma cell neoplasmPlasma cell myelomaMultiple myelomaCell sortingFluorescence-activated cell sortingFACS
spellingShingle Yu Jeong Choi
Jaeguk Choi
Yehyun Kang
Saeam Shin
Seung-Tae Lee
Jong Rak Choi
Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beads
Cancer Cell International
Plasma cell neoplasm
Plasma cell myeloma
Multiple myeloma
Cell sorting
Fluorescence-activated cell sorting
FACS
title Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beads
title_full Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beads
title_fullStr Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beads
title_full_unstemmed Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beads
title_short Evaluation of plasma cell sorting methods in multiple myeloma patients: flow cytometry versus magnetic beads
title_sort evaluation of plasma cell sorting methods in multiple myeloma patients flow cytometry versus magnetic beads
topic Plasma cell neoplasm
Plasma cell myeloma
Multiple myeloma
Cell sorting
Fluorescence-activated cell sorting
FACS
url https://doi.org/10.1186/s12935-025-03647-8
work_keys_str_mv AT yujeongchoi evaluationofplasmacellsortingmethodsinmultiplemyelomapatientsflowcytometryversusmagneticbeads
AT jaegukchoi evaluationofplasmacellsortingmethodsinmultiplemyelomapatientsflowcytometryversusmagneticbeads
AT yehyunkang evaluationofplasmacellsortingmethodsinmultiplemyelomapatientsflowcytometryversusmagneticbeads
AT saeamshin evaluationofplasmacellsortingmethodsinmultiplemyelomapatientsflowcytometryversusmagneticbeads
AT seungtaelee evaluationofplasmacellsortingmethodsinmultiplemyelomapatientsflowcytometryversusmagneticbeads
AT jongrakchoi evaluationofplasmacellsortingmethodsinmultiplemyelomapatientsflowcytometryversusmagneticbeads