Adaptability Study of Hydrogen Fuel Cell Integrated Energy Systems

This paper focuses on a hydrogen fuel cell power generation system integrated with photovoltaic (PV) generation, energy storage, and distribution network subsystems, conducting an economic and environmental adaptability analysis. Based on load balance, a mathematical model for the hydrogen fuel cell...

Full description

Saved in:
Bibliographic Details
Main Authors: Haikui Jin, Jian Wang, Ying Wang, Yingjun Ruan, Yuan Gao, Fanyue Qian, Xiaoyan Xu, Chen Ju, Xun Dong
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/8/2054
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper focuses on a hydrogen fuel cell power generation system integrated with photovoltaic (PV) generation, energy storage, and distribution network subsystems, conducting an economic and environmental adaptability analysis. Based on load balance, a mathematical model for the hydrogen fuel cell integrated energy system is established, and four scenarios are constructed: grid-powered, grid + fuel cell, grid + fuel cell + PV, and grid + fuel cell + PV + energy storage. The analysis results show that under the single-rate electricity pricing model, by 2030, the annual costs of Scenarios 3 and 4 are 11.46% and 12.67% lower than Scenario 1, respectively; by 2035, they are reduced by 19.32% and 20.43%, respectively. Under the two-part pricing model, by 2030, the annual costs of Scenarios 3 and 4 are 21.28% and 26.50% lower than Scenario 1, respectively; by 2035, they are reduced by 27.72% and 32.36%, respectively. These quantitative results indicate that the integration of hydrogen fuel cells with PV and energy storage systems can significantly reduce costs and promote their application and development in residential buildings.
ISSN:1996-1073