On the Fractional Derivative of Dirac Delta Function and Its Application

The Dirac delta function and its integer-order derivative are widely used to solve integer-order differential/integral equation and integer-order system in related fields. On the other hand, the fractional-order system gets more and more attention. This paper investigates the fractional derivative o...

Full description

Saved in:
Bibliographic Details
Main Authors: Zaiyong Feng, Linghua Ye, Yi Zhang
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2020/1842945
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Dirac delta function and its integer-order derivative are widely used to solve integer-order differential/integral equation and integer-order system in related fields. On the other hand, the fractional-order system gets more and more attention. This paper investigates the fractional derivative of the Dirac delta function and its Laplace transform to explore the solution for fractional-order system. The paper presents the Riemann-Liouville and the Caputo fractional derivative of the Dirac delta function, and their analytic expression. The Laplace transform of the fractional derivative of the Dirac delta function is given later. The proposed fractional derivative of the Dirac delta function and its Laplace transform are effectively used to solve fractional-order integral equation and fractional-order system, the correctness of each solution is also verified.
ISSN:1687-9120
1687-9139