On the Fractional Derivative of Dirac Delta Function and Its Application
The Dirac delta function and its integer-order derivative are widely used to solve integer-order differential/integral equation and integer-order system in related fields. On the other hand, the fractional-order system gets more and more attention. This paper investigates the fractional derivative o...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2020/1842945 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Dirac delta function and its integer-order derivative are widely used to solve integer-order differential/integral equation and integer-order system in related fields. On the other hand, the fractional-order system gets more and more attention. This paper investigates the fractional derivative of the Dirac delta function and its Laplace transform to explore the solution for fractional-order system. The paper presents the Riemann-Liouville and the Caputo fractional derivative of the Dirac delta function, and their analytic expression. The Laplace transform of the fractional derivative of the Dirac delta function is given later. The proposed fractional derivative of the Dirac delta function and its Laplace transform are effectively used to solve fractional-order integral equation and fractional-order system, the correctness of each solution is also verified. |
---|---|
ISSN: | 1687-9120 1687-9139 |