Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing

When using a long range radar (LRR) to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS) to solve micro-Doppler ambiguity. According to the RIP requirement, a sp...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing-bo Zhuang, Zhen-miao Deng, Yi-shan Ye, Yi-xiong Zhang, Yan-yong Chen
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2015/864508
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When using a long range radar (LRR) to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS) to solve micro-Doppler ambiguity. According to the RIP requirement, a sparse probing pulse train with its transmitting time random is designed. After matched filtering, the slow-time echo signals of the micromotion target can be viewed as randomly sparse sampling of Doppler spectrum. Select several successive pulses to form a short-time window and the CS sensing matrix can be built according to the time stamps of these pulses. Then performing Orthogonal Matching Pursuit (OMP), the unambiguous micro-Doppler spectrum can be obtained. The proposed algorithm is verified using the echo signals generated according to the theoretical model and the signals with micro-Doppler signature produced using the commercial electromagnetic simulation software FEKO.
ISSN:2090-0147
2090-0155