Space-Time Hybrid Model for Short-Time Travel Speed Prediction

Short-time traffic speed forecasting is a significant issue for developing Intelligent Transportation Systems applications, and accurate speed forecasting results are necessary inputs for Intelligent Traffic Security Information System (ITSIS) and advanced traffic management systems (ATMS). This pap...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi Fan, Wei Wang, Xiaojian Hu, Xuedong Hua, Zhuyun Liu
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2018/7696592
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Short-time traffic speed forecasting is a significant issue for developing Intelligent Transportation Systems applications, and accurate speed forecasting results are necessary inputs for Intelligent Traffic Security Information System (ITSIS) and advanced traffic management systems (ATMS). This paper presents a hybrid model for travel speed based on temporal and spatial characteristics analysis and data fusion. This proposed methodology predicts speed by dividing the data into three parts: a periodic trend estimated by Fourier series, a residual part modeled by the ARIMA model, and the possible events affected by upstream or downstream traffic conditions. The aim of this study is to improve the accuracy of the prediction by modeling time and space variation of speed, and the forecast results could simultaneously reflect the periodic variation of traffic speed and emergencies. This information could provide decision-makers with a basis for developing traffic management measures. To achieve the research objective, one year of speed data was collected in Twin Cities Metro, Minnesota. The experimental results demonstrate that the proposed method can be used to explore the periodic characteristics of speed data and show abilities in increasing the accuracy of travel speed prediction.
ISSN:1026-0226
1607-887X