Channel Shortening-Based Single-Carrier Underwater Acoustic Communications in Impulsive Environment

Underwater acoustic (UWA) communication encounters significant challenges, including impulsive noise from breaking waves and marine organisms, as well as long-delay taps caused by ocean properties and high transmission rates. To address these issues, we enhance the channel estimation process by intr...

Full description

Saved in:
Bibliographic Details
Main Authors: Xingbin Tu, Zicheng Li, Yan Wei, Fengzhong Qu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/1/103
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Underwater acoustic (UWA) communication encounters significant challenges, including impulsive noise from breaking waves and marine organisms, as well as long-delay taps caused by ocean properties and high transmission rates. To address these issues, we enhance the channel estimation process by introducing iteratively reweighted least squares (IRLS) methods and propose an impulsive noise suppression algorithm. Furthermore, we analyze the inter-frequency interference (IFI) resulting from channel variability and implement IFI cancellation (IFIC) during iterative processing. Furthermore, an IFIC-based dual decision–feedback equalization (DDFE) algorithm is proposed for fast time-varying channels, enabling a considerable reduction in channel length and subsequent equalizer complexity. The proposed IFIC-based DDFE algorithm with impulsive noise suppression has been validated through sea trial data, demonstrating robustness against impulsive noise. Experimental results indicate that the proposed algorithm reduces click signal energy and significantly improves receiver performance compared to traditional DDFE algorithms. This research highlights the effectiveness of adapted UWA communication strategies in environments characterized by impulsive noise and long delay taps, facilitating more reliable UWA communication.
ISSN:2077-1312