Kilometer-Scale Regional Modeling of Precipitation Projections for Bulgaria Using HPC Discoverer
The main goal of this study is to present future changes in various precipitation indices at a kilometer-scale resolution for Bulgaria on an annual and seasonal basis. Numerical simulations were conducted using the Non-Hydrostatic Regional Climate Model version 4 (RegCM4-NH) following the Coordinate...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/7/814 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The main goal of this study is to present future changes in various precipitation indices at a kilometer-scale resolution for Bulgaria on an annual and seasonal basis. Numerical simulations were conducted using the Non-Hydrostatic Regional Climate Model version 4 (RegCM4-NH) following the Coordinated Regional Climate Downscaling Experiment Flagship Pilot Study protocol for three 10-year periods (1995–2004, 2041–2050, and 2090–2099), with horizontal grid resolutions of 15 km and 3 km, on the petascale supercomputer HPC Discoverer at Sofia Tech Park. Data from the Hadley Centre Global Environment Model version 2 (HadGEM2-ES), based on the Representative Concentration Pathway 8.5 (RCP8.5) scenario, were used as boundary conditions for the regional climate model (RCM) simulations, which were subsequently downscaled to the kilometer-scale (3 km) simulations using a one-way nesting approach. High-resolution model data were compared with high-resolution observational datasets as well as lower-resolution (15 km) data. Future changes in precipitation indices were analyzed on both annual and seasonal scales, including mean daily and hourly precipitation, the frequency and intensity of wet days (>1 mm/day) and wet hours (>0.1 mm/hour), extreme daily precipitation (99th percentile, p99), and extreme hourly precipitation (99.9th percentile, p99.9) for both future periods. Additionally, changes in near-surface (2 m) temperature and surface snow amount were also presented. There is no substantial difference in projected temperature change between the resolutions. A positive trend in annual mean precipitation is expected in the near future. Extreme precipitation (p99 and p99.9) is projected to increase in spring and winter, accompanied by a rise in daily and hourly precipitation intensity across both future periods. An increase in surface snow amount is observed in the central Danubian Plain, Thracian Lowland, and parts of the Rila and Pirin mountains for the near-future period. However, surface snow amount is expected to decrease by the end of the century. |
|---|---|
| ISSN: | 2073-4433 |