Real-Time Evaluation of Compaction Quality by Using Artificial Neural Networks

The primary goal of this study is to find an easy and convenient way to estimate the degree of compaction in real time for compaction quality control. In this paper, an artificial neural network classifier is developed to identify the different characteristic patterns of drum vibration and classify...

Full description

Saved in:
Bibliographic Details
Main Authors: Weidong Cao, Shutang Liu, Xuechi Gao, Fei Ren, Peng Liu, Qilun Wu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2020/6617742
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The primary goal of this study is to find an easy and convenient way to estimate the degree of compaction in real time for compaction quality control. In this paper, an artificial neural network classifier is developed to identify the different characteristic patterns of drum vibration and classify them according to the different compaction levels. At first, a field compaction experiment is designed and performed in a construction site, and the degree of compaction and the vibration are measured. Then, the vibration signals collected from the experiment are processed to extract the features of vibration patterns and labeled with the compaction level to train the artificial neural network model. At last, the performance of the artificial neural network classifier is verified against the degree of compaction measured by using a nuclear density gauge. It can be found that artificial neural networks show good performance and huge potential for the problem of compaction quality control.
ISSN:1687-8434
1687-8442