Gas-Water Flow Behavior in Water-Bearing Tight Gas Reservoirs

Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the g...

Full description

Saved in:
Bibliographic Details
Main Authors: Renyi Cao, Liyou Ye, Qihong Lei, Xinhua Chen, Y. Zee Ma, Xiao Huang
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2017/9745795
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Some tight sandstone gas reservoirs contain mobile water, and the mobile water generally has a significant impact on the gas flowing in tight pores. The flow behavior of gas and water in tight pores is different than in conventional formations, yet there is a lack of adequate models to predict the gas production and describe the gas-water flow behaviors in water-bearing tight gas reservoirs. Based on the experimental results, this paper presents mathematical models to describe flow behaviors of gas and water in tight gas formations; the threshold pressure gradient, stress sensitivity, and relative permeability are all considered in our models. A numerical simulator using these models has been developed to improve the flow simulation accuracy for water-bearing tight gas reservoirs. The results show that the effect of stress sensitivity becomes larger as water saturation increases, leading to a fast decline of gas production; in addition, the nonlinear flow of gas phase is aggravated with the increase of water saturation and the decrease of permeability. The gas recovery decreases when the threshold pressure gradient (TPG) and stress sensitivity are taken into account. Therefore, a reasonable drawdown pressure should be set to minimize the damage of nonlinear factors to gas recovery.
ISSN:1468-8115
1468-8123