Leader-Following-Based Optimal Fault-Tolerant Consensus Control for Air–Marine–Submarine Heterogeneous Systems

This paper mainly investigates the fault-tolerant consensus problem in heterogeneous multi-agent systems. Firstly, a control model of a leader–follower heterogeneous multi-agent system (HMAS) composed of multiple unmanned aerial vehicles (UAVs), multiple unmanned surface vehicles (USVs), and multipl...

Full description

Saved in:
Bibliographic Details
Main Authors: Yandong Li, Longqi Li, Ling Zhu, Zehua Zhang, Yuan Guo
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/5/878
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper mainly investigates the fault-tolerant consensus problem in heterogeneous multi-agent systems. Firstly, a control model of a leader–follower heterogeneous multi-agent system (HMAS) composed of multiple unmanned aerial vehicles (UAVs), multiple unmanned surface vehicles (USVs), and multiple unmanned underwater vehicles (UUVs) is established. Then, for the fault-tolerant control (FTC) consensus problem of heterogeneous systems under partial actuator failures and interruption failures, an optimal FTC protocol for heterogeneous multi-agent systems based on the control allocation algorithm is designed. The derived optimal FTC protocol is applied to the heterogeneous system. The asymptotic stability of the protocol is proved by the Lyapunov stability theory. Finally, the effectiveness of the control strategy is verified through simulation tests.
ISSN:2077-1312