Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations

<p>We present a global climatology of upper-tropospheric hydrogen cyanide (HCN), carbon monoxide (CO), acetylene (<span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span>), ethane (<span class="inline-formula">C<sub>2<...

Full description

Saved in:
Bibliographic Details
Main Authors: N. Glatthor, G. P. Stiller, T. von Clarmann, B. Funke, S. Kellmann, A. Linden
Format: Article
Language:English
Published: Copernicus Publications 2025-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832582939414626304
author N. Glatthor
G. P. Stiller
T. von Clarmann
B. Funke
S. Kellmann
A. Linden
author_facet N. Glatthor
G. P. Stiller
T. von Clarmann
B. Funke
S. Kellmann
A. Linden
author_sort N. Glatthor
collection DOAJ
description <p>We present a global climatology of upper-tropospheric hydrogen cyanide (HCN), carbon monoxide (CO), acetylene (<span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span>), ethane (<span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span>), peroxyacetyl nitrate (PAN), and formic acid (HCOOH) obtained from observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Environmental Satellite (Envisat) between 2002 and 2012. At northern midlatitudes and high latitudes, the biomass burning tracer HCN, but also CO, PAN, and HCOOH, exhibit maxima during spring and/or summer and minima during winter. On the contrary, maximum northern extratropical <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span> and <span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span> amounts were measured during winter and spring, and minimum values were measured during summer and fall. In the tropics and subtropics, enhanced amounts of all pollutants were observed during all seasons, especially widespread and up to southern midlatitudes during austral spring. Other characteristic features are eastward transport of anthropogenic <span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span> and of biogenic HCOOH from Central and North America in boreal summer, accumulation of pollutants in the Asian monsoon anticyclone (AMA), and enhanced <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span> over southeastern Asia in boreal winter. Clear indication of biogenic release of HCOOH was also found above tropical South America and Africa. A global correlation analysis of the other pollutants with HCN corroborates common release by biomass burning as a source of the widespread southern hemispheric pollution during austral spring. Furthermore, high correlation with HCN points to biomass burning as a major source of tropical and subtropical <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span> and PAN during most of the year. In the northern extratropics, there are generally low correlations with HCN during spring and early summer, indicating the influence of anthropogenic and biogenic sources. However, in August, there are stronger correlations above Siberia and boreal North America, which points to common release by boreal fires. This is confirmed by the respective enhancement ratios (ERs). The ERs measured above northeastern Africa fit well to the emission ratios of the dominant local fire type (savanna burning) for <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span>, while those for CO, <span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span>, and HCOOH rather indicate tropical forest fires or additional anthropogenic or biogenic sources. The southern hemispheric <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><msub><mi mathvariant="normal">C</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">6</mn></msub></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ef4c16a1fc51e58a967532eec31bd8b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00001.svg" width="74pt" height="14pt" src="acp-25-1175-2025-ie00001.png"/></svg:svg></span></span> ERs obtained during August to October are in good agreement with the emission ratio for savanna fires. The same applies for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><msub><mi mathvariant="normal">C</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="128f7d9050ce8e575a7c502ae96dfcc1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00002.svg" width="74pt" height="14pt" src="acp-25-1175-2025-ie00002.png"/></svg:svg></span></span> in August and for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">CO</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="43d71f300f80f945ad26d496f659c1b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00003.svg" width="64pt" height="14pt" src="acp-25-1175-2025-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCOOH</mi></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="89pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f0464ba7c2e02ff6b5c89b131002b1db"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00004.svg" width="89pt" height="14pt" src="acp-25-1175-2025-ie00004.png"/></svg:svg></span></span> in October.</p>
format Article
id doaj-art-3ff721a8a8694d0b8265ae7434503dc2
institution Kabale University
issn 1680-7316
1680-7324
language English
publishDate 2025-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj-art-3ff721a8a8694d0b8265ae7434503dc22025-01-29T05:26:17ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242025-01-01251175120810.5194/acp-25-1175-2025Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variationsN. Glatthor0G. P. Stiller1T. von Clarmann2B. Funke3S. Kellmann4A. Linden5Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, GermanyKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, GermanyKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, GermanyInstituto de Astrofísica de Andalucía, CSIC, Granada, SpainKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, GermanyKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany<p>We present a global climatology of upper-tropospheric hydrogen cyanide (HCN), carbon monoxide (CO), acetylene (<span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span>), ethane (<span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span>), peroxyacetyl nitrate (PAN), and formic acid (HCOOH) obtained from observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Environmental Satellite (Envisat) between 2002 and 2012. At northern midlatitudes and high latitudes, the biomass burning tracer HCN, but also CO, PAN, and HCOOH, exhibit maxima during spring and/or summer and minima during winter. On the contrary, maximum northern extratropical <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span> and <span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span> amounts were measured during winter and spring, and minimum values were measured during summer and fall. In the tropics and subtropics, enhanced amounts of all pollutants were observed during all seasons, especially widespread and up to southern midlatitudes during austral spring. Other characteristic features are eastward transport of anthropogenic <span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span> and of biogenic HCOOH from Central and North America in boreal summer, accumulation of pollutants in the Asian monsoon anticyclone (AMA), and enhanced <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span> over southeastern Asia in boreal winter. Clear indication of biogenic release of HCOOH was also found above tropical South America and Africa. A global correlation analysis of the other pollutants with HCN corroborates common release by biomass burning as a source of the widespread southern hemispheric pollution during austral spring. Furthermore, high correlation with HCN points to biomass burning as a major source of tropical and subtropical <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span> and PAN during most of the year. In the northern extratropics, there are generally low correlations with HCN during spring and early summer, indicating the influence of anthropogenic and biogenic sources. However, in August, there are stronger correlations above Siberia and boreal North America, which points to common release by boreal fires. This is confirmed by the respective enhancement ratios (ERs). The ERs measured above northeastern Africa fit well to the emission ratios of the dominant local fire type (savanna burning) for <span class="inline-formula">C<sub>2</sub>H<sub>2</sub></span>, while those for CO, <span class="inline-formula">C<sub>2</sub>H<sub>6</sub></span>, and HCOOH rather indicate tropical forest fires or additional anthropogenic or biogenic sources. The southern hemispheric <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><msub><mi mathvariant="normal">C</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">6</mn></msub></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ef4c16a1fc51e58a967532eec31bd8b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00001.svg" width="74pt" height="14pt" src="acp-25-1175-2025-ie00001.png"/></svg:svg></span></span> ERs obtained during August to October are in good agreement with the emission ratio for savanna fires. The same applies for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><msub><mi mathvariant="normal">C</mi><mn mathvariant="normal">2</mn></msub><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="128f7d9050ce8e575a7c502ae96dfcc1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00002.svg" width="74pt" height="14pt" src="acp-25-1175-2025-ie00002.png"/></svg:svg></span></span> in August and for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">CO</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="43d71f300f80f945ad26d496f659c1b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00003.svg" width="64pt" height="14pt" src="acp-25-1175-2025-ie00003.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCOOH</mi></mrow><mo>/</mo><mi mathvariant="normal">Δ</mi><mrow class="chem"><mi mathvariant="normal">HCN</mi></mrow></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="89pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f0464ba7c2e02ff6b5c89b131002b1db"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-25-1175-2025-ie00004.svg" width="89pt" height="14pt" src="acp-25-1175-2025-ie00004.png"/></svg:svg></span></span> in October.</p>https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025.pdf
spellingShingle N. Glatthor
G. P. Stiller
T. von Clarmann
B. Funke
S. Kellmann
A. Linden
Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations
Atmospheric Chemistry and Physics
title Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations
title_full Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations
title_fullStr Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations
title_full_unstemmed Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations
title_short Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations
title_sort upper tropospheric pollutants observed by mipas geographic and seasonal variations
url https://acp.copernicus.org/articles/25/1175/2025/acp-25-1175-2025.pdf
work_keys_str_mv AT nglatthor uppertroposphericpollutantsobservedbymipasgeographicandseasonalvariations
AT gpstiller uppertroposphericpollutantsobservedbymipasgeographicandseasonalvariations
AT tvonclarmann uppertroposphericpollutantsobservedbymipasgeographicandseasonalvariations
AT bfunke uppertroposphericpollutantsobservedbymipasgeographicandseasonalvariations
AT skellmann uppertroposphericpollutantsobservedbymipasgeographicandseasonalvariations
AT alinden uppertroposphericpollutantsobservedbymipasgeographicandseasonalvariations