The 2D Dirichlet Problem for the Propagative Helmholtz Equation in an Exterior Domain with Cracks and Singularities at the Edges

The Dirichlet problem for the 2D Helmholtz equation in an exterior domain with cracks is studied. The compatibility conditions at the tips of the cracks are assumed. The existence of a unique classical solution is proved by potential theory. The integral representation for a solution in the form of...

Full description

Saved in:
Bibliographic Details
Main Author: P. A. Krutitskii
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/340310
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Dirichlet problem for the 2D Helmholtz equation in an exterior domain with cracks is studied. The compatibility conditions at the tips of the cracks are assumed. The existence of a unique classical solution is proved by potential theory. The integral representation for a solution in the form of potentials is obtained. The problem is reduced to the Fredholm equation of the second kind and of index zero, which is uniquely solvable. The asymptotic formulae describing singularities of a solution gradient at the edges (endpoints) of the cracks are presented. The weak solution to the problem may not exist, since the problem is studied under such conditions that do not ensure existence of a weak solution.
ISSN:0161-1712
1687-0425