Fogging with Hydrogen Peroxide and Hypochlorous Acid: An Option for Disinfection and Reuse of Disposable Isolation Gowns in Medical Practice

A total of 1.6 million tons of personal protective equipment (PPE) waste has been generated daily since 2019 and this production has not abated since that time. Within PPEs, isolation gowns make up the largest percentage by weight of landfill waste. This study aimed to evaluate the effectiveness of...

Full description

Saved in:
Bibliographic Details
Main Authors: Shay Iyer, Zenhwa Ouyang, Arathi Vinayak
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Microorganisms
Subjects:
Online Access:https://www.mdpi.com/2076-2607/13/7/1537
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A total of 1.6 million tons of personal protective equipment (PPE) waste has been generated daily since 2019 and this production has not abated since that time. Within PPEs, isolation gowns make up the largest percentage by weight of landfill waste. This study aimed to evaluate the effectiveness of rapid, reproducible disinfection protocols to help facilitate safe reuse and minimize risks from microbial contamination. Disinfection of isolation gowns via fogging with hydrogen peroxide (HP) and hypochlorous acid (HC) were evaluated in the present study compared to standard ethylene oxide (EO) sterilization. This study was conducted at VCA West Coast Specialty and Emergency Animal Hospital in the United States. Ten isolation gowns (control) were cultured on tryptic soy agar contact plates in 10 predetermined areas to determine microbial load and morphology/types on non-sterile gowns before use. Following this, 10 gowns were fogged with 12% HP, and then once drying was complete, they were cultured in the predetermined areas for microbial load and morphology/types. This procedure was repeated with another set of 10 gowns fogged with 500 ppm HC. Lastly, 10 gowns were sterilized with EO using standard protocol and cultures were performed similarly. Median CFU (colony-forming unit) counts at 48 h for control, EO, HP, and HC were 4.5, 0, 0, and 0; at 72 h, they were 107, 0, 0, and 0, respectively. No significant difference was noted between the disinfection groups; post hoc pairwise analysis showed that the CFU counts for the disinfection groups were significantly lower than those for the control. The median percent reduction at 48 h for EO, HP, and HC was 100, 100, and 100; at 72 h, it was 100, 100, and 100, respectively. No significant difference was detected among the groups. The median number of microbe types for control, EO, HP, and HC was 2.5, 0, 0, and 0; there was no difference between the disinfection groups, but the number of microbe types was significantly higher for the control than for the disinfection groups. EO is environmentally toxic, expensive, and carcinogenic; it requires prolonged disinfection cycle times, expensive equipment, and trained personnel. This study suggests that HP and HC provide a cost-effective, relatively nontoxic, environmentally safe, and comparatively short disinfection time option for the disinfection and reuse of isolation gowns that does not require trained personnel or specialized equipment.
ISSN:2076-2607